-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathconvert_to_mnist_format.py
119 lines (104 loc) · 4.05 KB
/
convert_to_mnist_format.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#
# This python script converts a sample of the notMNIST dataset into
# the same file format used by the MNIST dataset. If you have a program
# that uses the MNIST files, you can run this script over notMNIST to
# produce a new set of data files that should be compatible with
# your program.
#
# Instructions:
#
# 1) if you already have a MNIST data/ directory, rename it and create
# a new one
#
# $ mv data data.original_mnist
# $ mkdir data
#
# 2) Download and unpack the notMNIST data. This can take a long time
# because the notMNIST data set consists of ~500,000 files
#
# $ curl -o notMNIST_small.tar.gz http://yaroslavvb.com/upload/notMNIST/notMNIST_small.tar.gz
# $ curl -o notMNIST_large.tar.gz http://yaroslavvb.com/upload/notMNIST/notMNIST_large.tar.gz
# $ tar xzf notMNIST_small.tar.gz
# $ tar xzf notMNIST_large.tar.gz
#
# 3) Run this script to convert the data to MNIST files, then compress them.
# These commands will produce files of the same size as MNIST
# notMNIST is larger than MNIST, and you can increase the sizes if you want.
#
# $ python convert_to_mnist_format.py notMNIST_small 1000 data/t10k-labels-idx1-ubyte data/t10k-images-idx3-ubyte
# $ python convert_to_mnist_format.py notMNIST_large 6000 data/train-labels-idx1-ubyte data/train-images-idx3-ubyte
# $ gzip data/*ubyte
#
import numpy, imageio, glob, sys, os, random
def get_labels_and_files(folder, number):
# Make a list of lists of files for each label
filelists = []
for label in range(0,10):
filelist = []
filelists.append(filelist);
dirname = os.path.join(folder, chr(ord('A') + label))
for file in os.listdir(dirname):
if (file.endswith('.png')):
fullname = os.path.join(dirname, file)
if (os.path.getsize(fullname) > 0):
filelist.append(fullname)
else:
print('file ' + fullname + ' is empty')
# sort each list of files so they start off in the same order
# regardless of how the order the OS returns them in
filelist.sort()
# Take the specified number of items for each label and
# build them into an array of (label, filename) pairs
# Since we seeded the RNG, we should get the same sample each run
labelsAndFiles = []
for label in range(0,10):
filelist = random.sample(filelists[label], number)
for filename in filelist:
labelsAndFiles.append((label, filename))
return labelsAndFiles
def make_arrays(labelsAndFiles):
images = []
labels = []
for i in range(0, len(labelsAndFiles)):
# display progress, since this can take a while
if (i % 100 == 0):
sys.stdout.write("\r%d%% complete" % ((i * 100)/len(labelsAndFiles)))
sys.stdout.flush()
filename = labelsAndFiles[i][1]
try:
image = imageio.imread(filename)
images.append(image)
labels.append(labelsAndFiles[i][0])
except:
# If this happens we won't have the requested number
print("\nCan't read image file " + filename)
count = len(images)
imagedata = numpy.zeros((count,28,28), dtype=numpy.uint8)
labeldata = numpy.zeros(count, dtype=numpy.uint8)
for i in range(0, len(labelsAndFiles)):
imagedata[i] = images[i]
labeldata[i] = labels[i]
print("\n")
return imagedata, labeldata
def write_labeldata(labeldata, outputfile):
header = numpy.array([0x0801, len(labeldata)], dtype='>i4')
with open(outputfile, "wb") as f:
f.write(header.tobytes())
f.write(labeldata.tobytes())
def write_imagedata(imagedata, outputfile):
header = numpy.array([0x0803, len(imagedata), 28, 28], dtype='>i4')
with open(outputfile, "wb") as f:
f.write(header.tobytes())
f.write(imagedata.tobytes())
def main(argv):
# Uncomment the line below if you want to seed the random
# number generator in the same way I did to produce the
# specific data files in this repo.
# random.seed(int("notMNIST", 36))
labelsAndFiles = get_labels_and_files(argv[1], int(argv[2]))
random.shuffle(labelsAndFiles)
imagedata, labeldata = make_arrays(labelsAndFiles)
write_labeldata(labeldata, argv[3])
write_imagedata(imagedata, argv[4])
if __name__=='__main__':
main(sys.argv)