-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathGSS1.cs
289 lines (242 loc) · 9.62 KB
/
GSS1.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
using System;
using System.IO;
// https://www.spoj.com/problems/GSS1/ #divide-and-conquer #segment-tree
// Does maximum sum subrange queries on an array.
public sealed class GSS1
{
private readonly ArrayBasedSegmentTree _segmentTree;
public GSS1(int[] sourceArray)
{
_segmentTree = new ArrayBasedSegmentTree(sourceArray);
}
public int Query(int queryStartIndex, int queryEndIndex)
=> _segmentTree.Query(queryStartIndex, queryEndIndex).MaximumSum;
}
// Most guides online cover this approach, but here's one good one:
// https://kartikkukreja.wordpress.com/2014/11/09/a-simple-approach-to-segment-trees/
// This segment tree has some minor optimizations (compared to say, GSS3) to avoid TLE.
public sealed class ArrayBasedSegmentTree
{
private readonly int[] _sourceArray;
private readonly MaximumSumQueryObject[] _treeArray;
public ArrayBasedSegmentTree(int[] sourceArray)
{
_sourceArray = sourceArray;
_treeArray = new MaximumSumQueryObject[2 * MathHelper.FirstPowerOfTwoEqualOrGreater(_sourceArray.Length) - 1];
Build(0, 0, _sourceArray.Length - 1);
}
private void Build(int treeArrayIndex, int segmentStartIndex, int segmentEndIndex)
{
if (segmentStartIndex == segmentEndIndex)
{
_treeArray[treeArrayIndex] = new MaximumSumQueryObject(_sourceArray[segmentStartIndex]);
return;
}
int leftChildTreeArrayIndex = 2 * treeArrayIndex + 1;
int rightChildTreeArrayIndex = leftChildTreeArrayIndex + 1;
int leftChildSegmentEndIndex = (segmentStartIndex + segmentEndIndex) / 2;
Build(leftChildTreeArrayIndex, segmentStartIndex, leftChildSegmentEndIndex);
Build(rightChildTreeArrayIndex, leftChildSegmentEndIndex + 1, segmentEndIndex);
_treeArray[treeArrayIndex] = _treeArray[leftChildTreeArrayIndex].Combine(_treeArray[rightChildTreeArrayIndex]);
}
public MaximumSumQueryObject Query(int queryStartIndex, int queryEndIndex)
=> Query(0, 0, _sourceArray.Length - 1, queryStartIndex, queryEndIndex);
private MaximumSumQueryObject Query(
int treeArrayIndex, int segmentStartIndex, int segmentEndIndex,
int queryStartIndex, int queryEndIndex)
{
if (queryStartIndex <= segmentStartIndex && queryEndIndex >= segmentEndIndex)
return _treeArray[treeArrayIndex];
int leftChildTreeArrayIndex = 2 * treeArrayIndex + 1;
int rightChildTreeArrayIndex = leftChildTreeArrayIndex + 1;
int leftChildSegmentEndIndex = (segmentStartIndex + segmentEndIndex) / 2;
if (queryStartIndex <= leftChildSegmentEndIndex && queryEndIndex > leftChildSegmentEndIndex)
return Query(leftChildTreeArrayIndex, segmentStartIndex, leftChildSegmentEndIndex, queryStartIndex, queryEndIndex)
.Combine(Query(rightChildTreeArrayIndex, leftChildSegmentEndIndex + 1, segmentEndIndex, queryStartIndex, queryEndIndex));
else if (queryStartIndex <= leftChildSegmentEndIndex)
return Query(leftChildTreeArrayIndex, segmentStartIndex, leftChildSegmentEndIndex, queryStartIndex, queryEndIndex);
else
return Query(rightChildTreeArrayIndex, leftChildSegmentEndIndex + 1, segmentEndIndex, queryStartIndex, queryEndIndex);
}
}
public sealed class MaximumSumQueryObject
{
private MaximumSumQueryObject()
{ }
public MaximumSumQueryObject(int value)
{
Sum = value;
MaximumSum = value;
MaximumLeftStartingSum = value;
MaximumRightStartingSum = value;
}
private int Sum { get; set; }
public int MaximumSum { get; private set; }
private int MaximumLeftStartingSum { get; set; }
private int MaximumRightStartingSum { get; set; }
public MaximumSumQueryObject Combine(MaximumSumQueryObject rightAdjacentValue)
=> new MaximumSumQueryObject
{
// The sum is just the sum of both.
Sum = Sum + rightAdjacentValue.Sum,
// The maximum sum either intersects both segments, or is entirely in one.
MaximumSum = Math.Max(
MaximumRightStartingSum + rightAdjacentValue.MaximumLeftStartingSum,
Math.Max(MaximumSum, rightAdjacentValue.MaximumSum)),
// The maximum left starting sum starts at the left, and may or may not cross into the right.
MaximumLeftStartingSum = Math.Max(
Sum + rightAdjacentValue.MaximumLeftStartingSum,
MaximumLeftStartingSum),
// The maximum right starting sum starts at the right, and may or may not cross into the left.
MaximumRightStartingSum = Math.Max(
rightAdjacentValue.Sum + MaximumRightStartingSum,
rightAdjacentValue.MaximumRightStartingSum)
};
}
public static class MathHelper
{
public static int FirstPowerOfTwoEqualOrGreater(int value)
{
int result = 1;
while (result < value)
{
result <<= 1;
}
return result;
}
}
public static class Program
{
private static void Main()
{
int arrayLength = FastIO.ReadNonNegativeInt();
int[] sourceArray = new int[arrayLength];
for (int i = 0; i < arrayLength; ++i)
{
sourceArray[i] = FastIO.ReadInt();
}
var solver = new GSS1(sourceArray);
int queryCount = FastIO.ReadNonNegativeInt();
for (int q = 0; q < queryCount; ++q)
{
FastIO.WriteInt(solver.Query(
queryStartIndex: FastIO.ReadNonNegativeInt() - 1,
queryEndIndex: FastIO.ReadNonNegativeInt() - 1));
FastIO.WriteLine();
}
FastIO.Flush();
}
}
// This is based in part on submissions from https://www.codechef.com/status/INTEST.
// It's assumed the input is well-formed, so if you try to read an integer when no
// integers remain in the input, there's undefined behavior (infinite loop).
public static class FastIO
{
private const byte _null = (byte)'\0';
private const byte _newLine = (byte)'\n';
private const byte _minusSign = (byte)'-';
private const byte _zero = (byte)'0';
private const int _inputBufferLimit = 8192;
private const int _outputBufferLimit = 8192;
private static readonly Stream _inputStream = Console.OpenStandardInput();
private static readonly byte[] _inputBuffer = new byte[_inputBufferLimit];
private static int _inputBufferSize = 0;
private static int _inputBufferIndex = 0;
private static readonly Stream _outputStream = Console.OpenStandardOutput();
private static readonly byte[] _outputBuffer = new byte[_outputBufferLimit];
private static readonly byte[] _digitsBuffer = new byte[11];
private static int _outputBufferSize = 0;
private static byte ReadByte()
{
if (_inputBufferIndex == _inputBufferSize)
{
_inputBufferIndex = 0;
_inputBufferSize = _inputStream.Read(_inputBuffer, 0, _inputBufferLimit);
if (_inputBufferSize == 0)
return _null; // All input has been read.
}
return _inputBuffer[_inputBufferIndex++];
}
public static int ReadNonNegativeInt()
{
byte digit;
// Consume and discard whitespace characters (their ASCII codes are all < _minusSign).
do
{
digit = ReadByte();
}
while (digit < _minusSign);
// Build up the integer from its digits, until we run into whitespace or the null byte.
int result = digit - _zero;
while (true)
{
digit = ReadByte();
if (digit < _zero) break;
result = result * 10 + (digit - _zero);
}
return result;
}
public static int ReadInt()
{
// Consume and discard whitespace characters (their ASCII codes are all < _minusSign).
byte digit;
do
{
digit = ReadByte();
}
while (digit < _minusSign);
bool isNegative = digit == _minusSign;
if (isNegative)
{
digit = ReadByte();
}
// Build up the integer from its digits, until we run into whitespace or the null byte.
int result = isNegative ? -(digit - _zero) : (digit - _zero);
while (true)
{
digit = ReadByte();
if (digit < _zero) break;
result = result * 10 + (isNegative ? -(digit - _zero) : (digit - _zero));
}
return result;
}
public static void WriteInt(int value)
{
bool isNegative = value < 0;
int digitCount = 0;
do
{
int digit = isNegative ? -(value % 10) : (value % 10);
_digitsBuffer[digitCount++] = (byte)(digit + _zero);
value /= 10;
} while (value != 0);
if (isNegative)
{
_digitsBuffer[digitCount++] = _minusSign;
}
if (_outputBufferSize + digitCount > _outputBufferLimit)
{
_outputStream.Write(_outputBuffer, 0, _outputBufferSize);
_outputBufferSize = 0;
}
while (digitCount > 0)
{
_outputBuffer[_outputBufferSize++] = _digitsBuffer[--digitCount];
}
}
public static void WriteLine()
{
if (_outputBufferSize == _outputBufferLimit) // else _outputBufferSize < _outputBufferLimit.
{
_outputStream.Write(_outputBuffer, 0, _outputBufferSize);
_outputBufferSize = 0;
}
_outputBuffer[_outputBufferSize++] = _newLine;
}
public static void Flush()
{
_outputStream.Write(_outputBuffer, 0, _outputBufferSize);
_outputBufferSize = 0;
_outputStream.Flush();
}
}