Skip to content

Latest commit

 

History

History
207 lines (166 loc) · 3.75 KB

README.md

File metadata and controls

207 lines (166 loc) · 3.75 KB

ML Algorithms Source Code

机器学习算法源码实现。


Contributer: datamonday

Github Repo: https://github.com/datamonday/ML-Algorithm-Source-Code


Supervised Learning

    • kNN (k-Nearest-Neighbors)
    • Logistic Regression
    • Gaussian Discriminat Analysis
    • Naive Bayes
  1. Decision Tree

    • ID3
    • C4.5
    • CART (Classification and Regression Decision Tree)
  2. SVM (Support Vector Machine)

    • SVC (Support Vector Classifier)
    • SVR (Support Vector Regression)
  3. Linear Regression

    • PolynomialRegression
    • LassoRegression (L1)
    • RidgeRegression (L2)
    • ElasticNet (L1+L2)
  4. Bagging

    • Random Forest
  5. Boosting

    • AdaBoost
    • GBDT
    • XGBoost
  6. Stacking

  7. Perceptron

    • Simple Perceptron
    • Multi-Layer Perceptron
  8. LDA (Linear Discriminant Analysis)

    • Simple LDA
    • Multi-Class LDA

Unsupervised Learning

    • PCA (Principal Component Analysis)
  1. K-Means
    • K-Means
    • K-Means ++
    • ISODATA
    • Fuzzy C-Means
    • Gaussian Mixed Model
    • SOFM (Self-Organized Feature Map)
    • DBSCAN
  2. AutoEncoder (AE)
  • AE
  • VAE
  1. GAN (Generative Adversarial Network)
    • DCGAN
    • StyleGAN
  2. Restricted Boltzmann Machine (RBM)
  3. Anormaly Detection
    • Isolation Forest
    • One-Class SVM

Compute Intelligence

    • GA (Genetic Algorithm)
    • PSO (Particle Swarm Optimization)
    • ACO (Ant Clony Optimization)
    • SA (Simulated Annealing)
    • NeuroEvolution

Deep Learning

  1. Activation Functions

    • Sigmoid
    • Tanh
    • Softmax
    • ReLU
    • LeakyReLU
    • PReLU
    • ELU
    • SELU
    • SoftPlus
  2. Loss Functions

    • HigeLoss
    • SquareLoss
    • CrossEntropy
    • MSE
    • RMSE
    • RMSLE
    • MAE
    • MAPE
  3. Optimizers

    • GD (Gradient Descent)
    • SGD (Stochastic Gradient Descent)
    • Mini-GD
    • NAG (Nesterov Accelerated Gradient)
    • SGD + Momentum
    • AdaGrad
    • AdaDelta
    • RMSProp
    • Adam
    • AdaMax
    • Nadam (Adam + NAG)
  4. Layers

    • Dense
    • Flatten
    • Reshape
    • Dropout
    • Activation
    • Batch Normalization
    • Layer Normalization
    • Group Normalization
    • RNN
    • LSTM
    • Conv1D
    • Conv2D
    • MaxPooling2D
    • AvgPooling2D
  5. Neural Networks

Reinforcement Learning

  1. Q-Learning
  2. Sara-Learning

Utils

  1. Kernels

    • Linear Kernel
    • Polynomial Kernel
    • RBF Kernel
  2. Data Pipeline

  3. Online Flow Data Process

  4. Data Operation

    • shuffle data
    • normalize
    • standardize
    • batch iterator
    • divide on features
    • polynomial features
    • get random subsets
    • normalize
    • standardize
    • train test split
    • k fold cross validation sets
    • bootstrap sample
    • to categorical
    • to nominal
    • make diagonal
  5. Evaluation Metrics

    • calculate_entropy
    • mean_squared_error
    • calculate_std_dev
    • calculate_variance
    • accuracy_score
    • recall_score
    • precision_score
    • f1_score
    • calculate_covariance_matrix
    • calculate_correlation_matrix
  6. Feature Selection

    • Filter
    • wrapper
    • statistical
  7. Fine-Tune Hyperparameters

    • Grid Search
    • Random Search
    • Bayesian Optimization
    • Hyperband
  8. PlotFunctions

    • loss curve
    • residual loss curve
    • acc curve
    • roc
    • p-r curve

Reference

  1. https://github.com/eriklindernoren/ML-From-Scratch