This repository has been archived by the owner on Aug 4, 2020. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 76
/
Copy path03-data-frames.html
535 lines (462 loc) · 19.9 KB
/
03-data-frames.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="author" content="Data Carpentry contributors" />
<title>Using data in data frames</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/bootstrap.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/font-awesome-5.0.13/css/fa-svg-with-js.css" rel="stylesheet" />
<script src="site_libs/font-awesome-5.0.13/js/fontawesome-all.min.js"></script>
<script src="site_libs/font-awesome-5.0.13/js/fa-v4-shims.min.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; position: absolute; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; }
pre.numberSource a.sourceLine:empty
{ position: absolute; }
pre.numberSource a.sourceLine::before
{ content: attr(data-line-number);
position: absolute; left: -5em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 51px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 56px;
margin-top: -56px;
}
.section h2 {
padding-top: 56px;
margin-top: -56px;
}
.section h3 {
padding-top: 56px;
margin-top: -56px;
}
.section h4 {
padding-top: 56px;
margin-top: -56px;
}
.section h5 {
padding-top: 56px;
margin-top: -56px;
}
.section h6 {
padding-top: 56px;
margin-top: -56px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<div class="container-fluid main-container">
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = false;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
padding-left: 25px;
text-indent: 0;
}
.tocify .list-group-item {
border-radius: 0px;
}
.tocify-subheader {
display: inline;
}
.tocify-subheader .tocify-item {
font-size: 0.95em;
}
</style>
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html"></a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
<li>
<a href="00-before-we-start.html">Before we start</a>
</li>
<li>
<a href="01-intro-to-R.html">Intro to R</a>
</li>
<li>
<a href="02-starting-with-data.html">Starting with data</a>
</li>
<li>
<a href="03-data-frames.html">Data frames</a>
</li>
<li>
<a href="04-dplyr.html">The dplyr package</a>
</li>
<li>
<a href="05-data-visualization.html">Data visualization</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/data-lessons/R-genomics">
<span class="fa fa-github fa-lg"></span>
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Using data in data frames</h1>
<h4 class="author"><em>Data Carpentry contributors</em></h4>
</div>
<hr />
<blockquote>
<h2 id="learning-objectives">Learning Objectives</h2>
<ul>
<li>Extract values from vectors and data frames.</li>
<li>Perform operations on columns in a data frame.</li>
<li>Append columns to a data frame.</li>
<li>Create subsets of a data frame.</li>
</ul>
</blockquote>
<hr />
<p>In this lesson you will learn how to extract and manipulate data stored in data frames in R. We will work with the <em>E. coli</em> metadata file that we used previously. Be sure to read this file into a dataframe named <code>metadata</code>, if you haven’t already done so.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" data-line-number="1">metadata <-<span class="st"> </span><span class="kw">read.csv</span>(<span class="st">'data/Ecoli_metadata.csv'</span>)</a></code></pre></div>
<p>Because the columns of a data frame are vectors, we will first learn how to extract elements from vectors and then learn how to apply this concept to select rows and columns from a data frame.</p>
<div id="extracting-values-with-indexing-and-sequences" class="section level1">
<h1>Extracting values with indexing and sequences</h1>
<div id="vectors" class="section level2">
<h2>Vectors</h2>
<p>Let’s create a vector containing the first ten letters of the alphabet.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" data-line-number="1">ten_letters <-<span class="st"> </span><span class="kw">c</span>(<span class="st">'a'</span>, <span class="st">'b'</span>, <span class="st">'c'</span>, <span class="st">'d'</span>, <span class="st">'e'</span>, <span class="st">'f'</span>, <span class="st">'g'</span>, <span class="st">'h'</span>, <span class="st">'i'</span>, <span class="st">'j'</span>)</a></code></pre></div>
<p>In order to extract one or several values from a vector, we must provide one or several indices in square brackets, just as we do in math. R indexes start at 1. Programming languages like Fortran, MATLAB, and R start counting at 1, because that’s what human beings typically do. Languages in the C family (including C++, Java, Perl, and Python) count from 0 because that’s simpler for computers to do.</p>
<p>So, to extract the 2nd element of <code>ten_letters</code> we type:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" data-line-number="1">ten_letters[<span class="dv">2</span>]</a></code></pre></div>
<p>We can extract multiple elements at a time by specifying mulitple indices inside the square brackets as a vector. Notice how you can use <code>:</code> to make a vector of all integers two numbers.</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" data-line-number="1">ten_letters[<span class="kw">c</span>(<span class="dv">1</span>,<span class="dv">7</span>)]</a>
<a class="sourceLine" id="cb4-2" data-line-number="2"></a>
<a class="sourceLine" id="cb4-3" data-line-number="3">ten_letters[<span class="dv">3</span><span class="op">:</span><span class="dv">6</span>]</a>
<a class="sourceLine" id="cb4-4" data-line-number="4"></a>
<a class="sourceLine" id="cb4-5" data-line-number="5">ten_letters[<span class="dv">10</span><span class="op">:</span><span class="dv">1</span>]</a>
<a class="sourceLine" id="cb4-6" data-line-number="6"></a>
<a class="sourceLine" id="cb4-7" data-line-number="7">ten_letters[<span class="kw">c</span>(<span class="dv">2</span>, <span class="dv">8</span><span class="op">:</span><span class="dv">10</span>)]</a></code></pre></div>
<p>Quick exercise / formative assessment: Select every other element in <code>ten_letters</code>.</p>
<p>What if we were dealing with a much longer vector? We can use the <code>seq()</code> function to quickly create sequences of numbers.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" data-line-number="1"><span class="kw">seq</span>(<span class="dv">1</span>, <span class="dv">10</span>, <span class="dt">by =</span> <span class="dv">2</span>)</a>
<a class="sourceLine" id="cb5-2" data-line-number="2"><span class="kw">seq</span>(<span class="dv">20</span>, <span class="dv">4</span>, <span class="dt">by =</span> <span class="dv">-3</span>)</a></code></pre></div>
<!--
Consider including:
# Create sequences between two numbers, given the number of values (length.out = number of values)
seq(1, 10, length.out = 2)
seq(20, 4, length.out = 3)
and discuss why they differ.
-->
<blockquote>
<h2 id="exercise">Exercise</h2>
<p>Fill in the blank to select the even elements of ten_letters using the seq() function.</p>
<p>ten_letters[____________]</p>
<blockquote>
<h2 id="solution">Solution</h2>
<p>ten_letters[seq(2, 10, by = 2)] {: .solution} {: .challenge}</p>
</blockquote>
</blockquote>
</div>
<div id="data-frames" class="section level2">
<h2>Data frames</h2>
<p>The metadata data frame has rows and columns (it has 2 dimensions), if we want to extract some specific data from it, we need to specify the “coordinates” we want from it. Row numbers come first, followed by column numbers (i.e. [row, column]).</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb6-1" data-line-number="1">metadata[<span class="dv">1</span>, <span class="dv">2</span>] <span class="co"># 1st element in the 2nd column </span></a>
<a class="sourceLine" id="cb6-2" data-line-number="2">metadata[<span class="dv">1</span>, <span class="dv">6</span>] <span class="co"># 1st element in the 6th column</span></a>
<a class="sourceLine" id="cb6-3" data-line-number="3">metadata[<span class="dv">1</span><span class="op">:</span><span class="dv">3</span>, <span class="dv">7</span>] <span class="co"># First three elements in the 7th column</span></a>
<a class="sourceLine" id="cb6-4" data-line-number="4">metadata[<span class="dv">3</span>, ] <span class="co"># 3rd element for all columns</span></a>
<a class="sourceLine" id="cb6-5" data-line-number="5">metadata[, <span class="dv">7</span>] <span class="co"># Entire 7th column</span></a></code></pre></div>
<blockquote>
<h2 id="challenge">Challenge</h2>
<p>The function <code>nrow()</code> on a <code>data.frame</code> returns the number of rows. For example, try typing nrow(metadata)<code>. Use</code>nrow()<code>and</code>seq()<code>to create a new data frame called</code>meta_by_2<code>that includes all even numbered rows of</code>metadata`.</p>
<h2 id="solution-1">Solution</h2>
<blockquote>
<p>meta_data[seq(2, nrow(metadata), by = 2, ]</p>
<p>{: .solution} {: .challenge}</p>
</blockquote>
</blockquote>
<p>For larger datasets, it can be tricky to remember the column number that corresponds to a particular variable. Sometimes the column number for a particular variable can change if your analysis adds or removes columns. The best practice when working with columns in a data frame is to refer to them by name. This also makes your code easier to read and your intentions clearer.</p>
<p>There are two ways to select a column by name from a data frame:</p>
<ul>
<li>Using <code>dataframe[ , "column_name"]</code></li>
<li>Using <code>dataframe$column_name</code></li>
</ul>
<p>You can do operations on a particular column, by selecting it using the <code>$</code> sign. In this case, the entire column is a vector. You can use <code>names(metadata)</code> or <code>colnames(metadata)</code> to remind yourself of the column names. For instance, to extract all the strain information from our datasets:</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb7-1" data-line-number="1"><span class="co"># Select the strain column from metadata</span></a>
<a class="sourceLine" id="cb7-2" data-line-number="2">metadata[ , <span class="st">"strain"</span>]</a>
<a class="sourceLine" id="cb7-3" data-line-number="3"></a>
<a class="sourceLine" id="cb7-4" data-line-number="4"><span class="co"># Alternatively...</span></a>
<a class="sourceLine" id="cb7-5" data-line-number="5">metadata<span class="op">$</span>strain</a></code></pre></div>
<p>The first method allows you to select multiple columns at once. Suppose we wanted strain and clade information:</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb8-1" data-line-number="1">metadata[, <span class="kw">c</span>(<span class="st">"strain"</span>, <span class="st">"clade"</span>)]</a></code></pre></div>
<p>You can even access columns by column name <em>and</em> select specific rows of interest. For example, if we wanted the strain and clade of just rows 4 through 7, we could do:</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb9-1" data-line-number="1">metadata[<span class="dv">4</span><span class="op">:</span><span class="dv">7</span>, <span class="kw">c</span>(<span class="st">"strain"</span>, <span class="st">"clade"</span>)]</a></code></pre></div>
<p><!– Still need to address the following learning objectives: * Append columns to a data frame. * Create subsets of a data frame.</p>
<p>The following headings are just suggestions.</p>
<blockquote>
</blockquote>
</div>
</div>
<div id="manipulating-columns" class="section level1">
<h1>Manipulating columns</h1>
<div id="mathematical-operations" class="section level2">
<h2>Mathematical operations</h2>
</div>
<div id="appending-new-columns" class="section level2">
<h2>Appending new columns</h2>
</div>
</div>
<div id="creating-subsets" class="section level1">
<h1>Creating subsets</h1>
</div>
<hr/>
<p><a href="http://datacarpentry.org/">Data Carpentry</a>,
2017-2018. <a href="LICENSE.html">License</a>. <a href="CONTRIBUTING.html">Contributing</a>. <br/>
Questions? Feedback?
Please <a href="https://github.com/datacarpentry/R-genomics/issues/new">file
an issue on GitHub</a>. <br/> On
Twitter: <a href="https://twitter.com/datacarpentry">@datacarpentry</a></p>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>