-
Notifications
You must be signed in to change notification settings - Fork 88
/
xtts_demo.py
765 lines (654 loc) · 28 KB
/
xtts_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
import argparse
import os
import sys
import tempfile
from pathlib import Path
import shutil
import glob
import gradio as gr
import librosa.display
import numpy as np
import torch
import torchaudio
import traceback
from utils.formatter import format_audio_list,find_latest_best_model, list_audios
from utils.gpt_train import train_gpt
from faster_whisper import WhisperModel
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
import requests
def download_file(url, destination):
try:
response = requests.get(url, stream=True)
response.raise_for_status()
with open(destination, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Downloaded file to {destination}")
return destination
except Exception as e:
print(f"Failed to download the file: {e}")
return None
# Clear logs
def remove_log_file(file_path):
log_file = Path(file_path)
if log_file.exists() and log_file.is_file():
log_file.unlink()
# remove_log_file(str(Path.cwd() / "log.out"))
def clear_gpu_cache():
# clear the GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
XTTS_MODEL = None
def create_zip(folder_path, zip_name):
zip_path = os.path.join(tempfile.gettempdir(), f"{zip_name}.zip")
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder_path)
return zip_path
def get_model_zip(out_path):
ready_folder = os.path.join(out_path, "ready")
if os.path.exists(ready_folder):
return create_zip(ready_folder, "optimized_model")
return None
def get_dataset_zip(out_path):
dataset_folder = os.path.join(out_path, "dataset")
if os.path.exists(dataset_folder):
return create_zip(dataset_folder, "dataset")
return None
def load_model(xtts_checkpoint, xtts_config, xtts_vocab,xtts_speaker):
global XTTS_MODEL
clear_gpu_cache()
if not xtts_checkpoint or not xtts_config or not xtts_vocab:
return "You need to run the previous steps or manually set the `XTTS checkpoint path`, `XTTS config path`, and `XTTS vocab path` fields !!"
config = XttsConfig()
config.load_json(xtts_config)
XTTS_MODEL = Xtts.init_from_config(config)
print("Loading XTTS model! ")
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab,speaker_file_path=xtts_speaker, use_deepspeed=False)
if torch.cuda.is_available():
XTTS_MODEL.cuda()
print("Model Loaded!")
return "Model Loaded!"
def run_tts(lang, tts_text, speaker_audio_file, temperature, length_penalty,repetition_penalty,top_k,top_p,sentence_split,use_config):
if XTTS_MODEL is None or not speaker_audio_file:
return "You need to run the previous step to load the model !!", None, None
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
if use_config:
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
length_penalty=XTTS_MODEL.config.length_penalty,
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
top_k=XTTS_MODEL.config.top_k,
top_p=XTTS_MODEL.config.top_p,
enable_text_splitting = True
)
else:
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=temperature, # Add custom parameters here
length_penalty=length_penalty,
repetition_penalty=float(repetition_penalty),
top_k=top_k,
top_p=top_p,
enable_text_splitting = sentence_split
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
out_path = fp.name
torchaudio.save(out_path, out["wav"], 24000)
return "Speech generated !", out_path, speaker_audio_file
def load_params_tts(out_path,version):
out_path = Path(out_path)
# base_model_path = Path.cwd() / "models" / version
# if not base_model_path.exists():
# return "Base model not found !","","",""
ready_model_path = out_path / "ready"
vocab_path = ready_model_path / "vocab.json"
config_path = ready_model_path / "config.json"
speaker_path = ready_model_path / "speakers_xtts.pth"
reference_path = ready_model_path / "reference.wav"
model_path = ready_model_path / "model.pth"
if not model_path.exists():
model_path = ready_model_path / "unoptimize_model.pth"
if not model_path.exists():
return "Params for TTS not found", "", "", ""
return "Params for TTS loaded", model_path, config_path, vocab_path,speaker_path, reference_path
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="""XTTS fine-tuning demo\n\n"""
"""
Example runs:
python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port
""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--whisper_model",
type=str,
help="Name of the whisper model selected by default (Optional) Choices are: ['large-v3','large-v2', 'large', 'medium', 'small'] Default Value: 'large-v3'",
default="large-v3",
)
parser.add_argument(
"--audio_folder_path",
type=str,
help="Path to the folder with audio files (optional)",
default="",
)
parser.add_argument(
"--share",
action="store_true",
default=False,
help="Enable sharing of the Gradio interface via public link.",
)
parser.add_argument(
"--port",
type=int,
help="Port to run the gradio demo. Default: 5003",
default=5003,
)
parser.add_argument(
"--out_path",
type=str,
help="Output path (where data and checkpoints will be saved) Default: output/",
default=str(Path.cwd() / "finetune_models"),
)
parser.add_argument(
"--num_epochs",
type=int,
help="Number of epochs to train. Default: 6",
default=6,
)
parser.add_argument(
"--batch_size",
type=int,
help="Batch size. Default: 2",
default=2,
)
parser.add_argument(
"--grad_acumm",
type=int,
help="Grad accumulation steps. Default: 1",
default=1,
)
parser.add_argument(
"--max_audio_length",
type=int,
help="Max permitted audio size in seconds. Default: 11",
default=11,
)
args = parser.parse_args()
with gr.Blocks(title=os.environ.get("APP_NAME", "Gradio")) as demo:
with gr.Tab("1 - Data processing"):
out_path = gr.Textbox(
label="Output path (where data and checkpoints will be saved):",
value=args.out_path,
)
# upload_file = gr.Audio(
# sources="upload",
# label="Select here the audio files that you want to use for XTTS trainining !",
# type="filepath",
# )
upload_file = gr.File(
file_count="multiple",
label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)",
)
audio_folder_path = gr.Textbox(
label="Path to the folder with audio files (optional):",
value=args.audio_folder_path,
)
whisper_model = gr.Dropdown(
label="Whisper Model",
value=args.whisper_model,
choices=[
"large-v3",
"large-v2",
"large",
"medium",
"small"
],
)
lang = gr.Dropdown(
label="Dataset Language",
value="en",
choices=[
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh",
"hu",
"ko",
"ja"
],
)
progress_data = gr.Label(
label="Progress:"
)
# demo.load(read_logs, None, logs, every=1)
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset")
def preprocess_dataset(audio_path, audio_folder_path, language, whisper_model, out_path, train_csv, eval_csv, progress=gr.Progress(track_tqdm=True)):
clear_gpu_cache()
train_csv = ""
eval_csv = ""
out_path = os.path.join(out_path, "dataset")
os.makedirs(out_path, exist_ok=True)
if audio_folder_path:
audio_files = list(list_audios(audio_folder_path))
else:
audio_files = audio_path
if not audio_files:
return "No audio files found! Please provide files via Gradio or specify a folder path.", "", ""
else:
try:
# Loading Whisper
device = "cuda" if torch.cuda.is_available() else "cpu"
# Detect compute type
if torch.cuda.is_available():
compute_type = "float16"
else:
compute_type = "float32"
asr_model = WhisperModel(whisper_model, device=device, compute_type=compute_type)
train_meta, eval_meta, audio_total_size = format_audio_list(audio_files, asr_model=asr_model, target_language=language, out_path=out_path, gradio_progress=progress)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"The data processing was interrupted due an error !! Please check the console to verify the full error message! \n Error summary: {error}", "", ""
# clear_gpu_cache()
# if audio total len is less than 2 minutes raise an error
if audio_total_size < 120:
message = "The sum of the duration of the audios that you provided should be at least 2 minutes!"
print(message)
return message, "", ""
print("Dataset Processed!")
return "Dataset Processed!", train_meta, eval_meta
with gr.Tab("2 - Fine-tuning XTTS Encoder"):
load_params_btn = gr.Button(value="Load Params from output folder")
version = gr.Dropdown(
label="XTTS base version",
value="v2.0.2",
choices=[
"v2.0.3",
"v2.0.2",
"v2.0.1",
"v2.0.0",
"main"
],
)
train_csv = gr.Textbox(
label="Train CSV:",
)
eval_csv = gr.Textbox(
label="Eval CSV:",
)
custom_model = gr.Textbox(
label="(Optional) Custom model.pth file , leave blank if you want to use the base file.",
value="",
)
num_epochs = gr.Slider(
label="Number of epochs:",
minimum=1,
maximum=100,
step=1,
value=args.num_epochs,
)
batch_size = gr.Slider(
label="Batch size:",
minimum=2,
maximum=512,
step=1,
value=args.batch_size,
)
grad_acumm = gr.Slider(
label="Grad accumulation steps:",
minimum=2,
maximum=128,
step=1,
value=args.grad_acumm,
)
max_audio_length = gr.Slider(
label="Max permitted audio size in seconds:",
minimum=2,
maximum=20,
step=1,
value=args.max_audio_length,
)
clear_train_data = gr.Dropdown(
label="Clear train data, you will delete selected folder, after optimizing",
value="none",
choices=[
"none",
"run",
"dataset",
"all"
])
progress_train = gr.Label(
label="Progress:"
)
# demo.load(read_logs, None, logs_tts_train, every=1)
train_btn = gr.Button(value="Step 2 - Run the training")
optimize_model_btn = gr.Button(value="Step 2.5 - Optimize the model")
import os
import shutil
from pathlib import Path
import traceback
def train_model(custom_model, version, language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length):
clear_gpu_cache()
# Check if `custom_model` is a URL and download it if true.
if custom_model.startswith("http"):
print("Downloading custom model from URL...")
custom_model = download_file(custom_model, "custom_model.pth")
if not custom_model:
return "Failed to download the custom model.", "", "", "", ""
run_dir = Path(output_path) / "run"
# Remove train dir
if run_dir.exists():
shutil.rmtree(run_dir)
# Check if the dataset language matches the language you specified
lang_file_path = Path(output_path) / "dataset" / "lang.txt"
# Check if lang.txt already exists and contains a different language
current_language = None
if lang_file_path.exists():
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
current_language = existing_lang_file.read().strip()
if current_language != language:
print("The language that was prepared for the dataset does not match the specified language. Change the language to the one specified in the dataset")
language = current_language
if not train_csv or not eval_csv:
return "You need to run the data processing step or manually set `Train CSV` and `Eval CSV` fields !", "", "", "", ""
try:
# convert seconds to waveform frames
max_audio_length = int(max_audio_length * 22050)
speaker_xtts_path, config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(custom_model, version, language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"The training was interrupted due to an error !! Please check the console to check the full error message! \n Error summary: {error}", "", "", "", ""
ready_dir = Path(output_path) / "ready"
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
shutil.copy(ft_xtts_checkpoint, ready_dir / "unoptimize_model.pth")
ft_xtts_checkpoint = os.path.join(ready_dir, "unoptimize_model.pth")
# Move reference audio to output folder and rename it
speaker_reference_path = Path(speaker_wav)
speaker_reference_new_path = ready_dir / "reference.wav"
shutil.copy(speaker_reference_path, speaker_reference_new_path)
print("Model training done!")
return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint, speaker_xtts_path, speaker_reference_new_path
def optimize_model(out_path, clear_train_data):
# print(out_path)
out_path = Path(out_path) # Ensure that out_path is a Path object.
ready_dir = out_path / "ready"
run_dir = out_path / "run"
dataset_dir = out_path / "dataset"
# Clear specified training data directories.
if clear_train_data in {"run", "all"} and run_dir.exists():
try:
shutil.rmtree(run_dir)
except PermissionError as e:
print(f"An error occurred while deleting {run_dir}: {e}")
if clear_train_data in {"dataset", "all"} and dataset_dir.exists():
try:
shutil.rmtree(dataset_dir)
except PermissionError as e:
print(f"An error occurred while deleting {dataset_dir}: {e}")
# Get full path to model
model_path = ready_dir / "unoptimize_model.pth"
if not model_path.is_file():
return "Unoptimized model not found in ready folder", ""
# Load the checkpoint and remove unnecessary parts.
checkpoint = torch.load(model_path, map_location=torch.device("cpu"))
del checkpoint["optimizer"]
for key in list(checkpoint["model"].keys()):
if "dvae" in key:
del checkpoint["model"][key]
# Make sure out_path is a Path object or convert it to Path
os.remove(model_path)
# Save the optimized model.
optimized_model_file_name="model.pth"
optimized_model=ready_dir/optimized_model_file_name
torch.save(checkpoint, optimized_model)
ft_xtts_checkpoint=str(optimized_model)
clear_gpu_cache()
return f"Model optimized and saved at {ft_xtts_checkpoint}!", ft_xtts_checkpoint
def load_params(out_path):
path_output = Path(out_path)
dataset_path = path_output / "dataset"
if not dataset_path.exists():
return "The output folder does not exist!", "", ""
eval_train = dataset_path / "metadata_train.csv"
eval_csv = dataset_path / "metadata_eval.csv"
# Write the target language to lang.txt in the output directory
lang_file_path = dataset_path / "lang.txt"
# Check if lang.txt already exists and contains a different language
current_language = None
if os.path.exists(lang_file_path):
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
current_language = existing_lang_file.read().strip()
clear_gpu_cache()
print(current_language)
return "The data has been updated", eval_train, eval_csv, current_language
with gr.Tab("3 - Inference"):
with gr.Row():
with gr.Column() as col1:
load_params_tts_btn = gr.Button(value="Load params for TTS from output folder")
xtts_checkpoint = gr.Textbox(
label="XTTS checkpoint path:",
value="",
)
xtts_config = gr.Textbox(
label="XTTS config path:",
value="",
)
xtts_vocab = gr.Textbox(
label="XTTS vocab path:",
value="",
)
xtts_speaker = gr.Textbox(
label="XTTS speaker path:",
value="",
)
progress_load = gr.Label(
label="Progress:"
)
load_btn = gr.Button(value="Step 3 - Load Fine-tuned XTTS model")
with gr.Column() as col2:
speaker_reference_audio = gr.Textbox(
label="Speaker reference audio:",
value="",
)
tts_language = gr.Dropdown(
label="Language",
value="en",
choices=[
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"zh",
"hu",
"ko",
"ja",
]
)
tts_text = gr.Textbox(
label="Input Text.",
value="This model sounds really good and above all, it's reasonably fast.",
)
with gr.Accordion("Advanced settings", open=False) as acr:
temperature = gr.Slider(
label="temperature",
minimum=0,
maximum=1,
step=0.05,
value=0.75,
)
length_penalty = gr.Slider(
label="length_penalty",
minimum=-10.0,
maximum=10.0,
step=0.5,
value=1,
)
repetition_penalty = gr.Slider(
label="repetition penalty",
minimum=1,
maximum=10,
step=0.5,
value=5,
)
top_k = gr.Slider(
label="top_k",
minimum=1,
maximum=100,
step=1,
value=50,
)
top_p = gr.Slider(
label="top_p",
minimum=0,
maximum=1,
step=0.05,
value=0.85,
)
sentence_split = gr.Checkbox(
label="Enable text splitting",
value=True,
)
use_config = gr.Checkbox(
label="Use Inference settings from config, if disabled use the settings above",
value=False,
)
tts_btn = gr.Button(value="Step 4 - Inference")
model_download_btn = gr.Button("Step 5 - Download Optimized Model ZIP")
dataset_download_btn = gr.Button("Step 5 - Download Dataset ZIP")
model_zip_file = gr.File(label="Download Optimized Model", interactive=False)
dataset_zip_file = gr.File(label="Download Dataset", interactive=False)
with gr.Column() as col3:
progress_gen = gr.Label(
label="Progress:"
)
tts_output_audio = gr.Audio(label="Generated Audio.")
reference_audio = gr.Audio(label="Reference audio used.")
prompt_compute_btn.click(
fn=preprocess_dataset,
inputs=[
upload_file,
audio_folder_path,
lang,
whisper_model,
out_path,
train_csv,
eval_csv
],
outputs=[
progress_data,
train_csv,
eval_csv,
],
)
load_params_btn.click(
fn=load_params,
inputs=[out_path],
outputs=[
progress_train,
train_csv,
eval_csv,
lang
]
)
train_btn.click(
fn=train_model,
inputs=[
custom_model,
version,
lang,
train_csv,
eval_csv,
num_epochs,
batch_size,
grad_acumm,
out_path,
max_audio_length,
],
outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint,xtts_speaker, speaker_reference_audio],
)
optimize_model_btn.click(
fn=optimize_model,
inputs=[
out_path,
clear_train_data
],
outputs=[progress_train,xtts_checkpoint],
)
load_btn.click(
fn=load_model,
inputs=[
xtts_checkpoint,
xtts_config,
xtts_vocab,
xtts_speaker
],
outputs=[progress_load],
)
tts_btn.click(
fn=run_tts,
inputs=[
tts_language,
tts_text,
speaker_reference_audio,
temperature,
length_penalty,
repetition_penalty,
top_k,
top_p,
sentence_split,
use_config
],
outputs=[progress_gen, tts_output_audio,reference_audio],
)
load_params_tts_btn.click(
fn=load_params_tts,
inputs=[
out_path,
version
],
outputs=[progress_load,xtts_checkpoint,xtts_config,xtts_vocab,xtts_speaker,speaker_reference_audio],
)
model_download_btn.click(
fn=get_model_zip,
inputs=[out_path],
outputs=[model_zip_file]
)
dataset_download_btn.click(
fn=get_dataset_zip,
inputs=[out_path],
outputs=[dataset_zip_file]
)
demo.launch(
share=args.share,
debug=False,
server_port=args.port,
# inweb=True,
# server_name="localhost"
)