-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcomputeScores.py
91 lines (69 loc) · 3.49 KB
/
computeScores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
'''
Bloom filter templates score computation for a given database and a specific protocol.
More details on the Bloom filter based BTP scheme in:
[IF18] M. Gomez-Barrero, C. Rathgeb, G. Li, R. Raghavendra, J. Galbally and C. Busch
"Multi-Biometric Template Protection Based on Bloom Filters", in Information Fusion, vol. 42, pp. 37-50, 2018.
Please remember to reference article [IF18] on any work made public, whatever the form,
based directly or indirectly on these metrics.
'''
__author__ = "Marta Gomez-Barrero"
__copyright__ = "Copyright (C) 2017 Hochschule Darmstadt"
__license__ = "License Agreement provided by Hochschule Darmstadt (https://github.com/dasec/multibiometric-bf-btp/blob/master/hda-license.pdf)"
__version__ = "1.0"
import numpy
import math
import os
import argparse
######################################################################
### Parameter and arguments definition
# location of source templates and score files
parser = argparse.ArgumentParser(description='Compute protected Bloom filter scores from a given DB and protocol.')
parser.add_argument('DB_BFtemplates', help='directory where the protected BF templates are stored', type=str)
parser.add_argument('matedComparisonsFile', help='file comprising the mated comparisons to be carried out', type=str)
parser.add_argument('nonMatedComparisonsFile', help='file comprising the non-mated comparisons to be carried out', type=str)
parser.add_argument('--scoresDir', help='directory where unprotected and protected scores will be stored', type=str, nargs='?', default = './scores/')
parser.add_argument('--matedScoresFile', help='file comprising the mated scores computed', type=str, nargs='?', default = 'matedScoresBF.txt')
parser.add_argument('--nonMatedScoresFile', help='file comprising the non-mated scores computed', type=str, nargs='?', default = 'nonMatedScoresBF.txt')
args = parser.parse_args()
DB_BFtemplates = args.DB_BFtemplates
matedComparisonsFile = args.matedComparisonsFile
nonMatedComparisonsFile = args.nonMatedComparisonsFile
scoresDir = args.scoresDir
matedScoresFile = args.matedScoresFile
nonMatedScoresFile = args.nonMatedScoresFile
if not os.path.exists(scoresDir):
os.mkdir(scoresDir)
####################################################################
### Some auxiliary functions
def hamming_distance(X, Y):
'''Computes the normalised Hamming distance between two Bloom filter templates'''
dist = 0
N_BF = X.shape[0]
for i in range(N_BF):
A = X[i, :]
B = Y[i, :]
suma = sum(A) + sum(B)
if suma > 0:
dist += float(sum(A ^ B)) / float(suma)
return dist / float(N_BF)
####################################################################
### Score computation
# read protocol files
matedF = open(matedComparisonsFile, 'r')
nonMatedF = open(nonMatedComparisonsFile, 'r')
# pre-allocate score arrays
matedScoresBF = []
nonMatedScoresBF = []
# compute scores for each reference template and save at each iteration
for l in matedF.readlines():
r = l.split()
aBF = numpy.loadtxt(DB_BFtemplates + r[0]).astype(int)
bBF = numpy.loadtxt(DB_BFtemplates + r[1]).astype(int)
matedScoresBF.append(hamming_distance(aBF, bBF))
for l in nonMatedF.readlines():
r = l.split()
aBF = numpy.loadtxt(DB_BFtemplates + r[0]).astype(int)
bBF = numpy.loadtxt(DB_BFtemplates + r[1]).astype(int)
nonMatedScoresBF.append(hamming_distance(aBF, bBF))
numpy.savetxt(scoresDir+matedScoresFile, matedScoresBF)
numpy.savetxt(scoresDir+nonMatedScoresFile, nonMatedScoresBF)