-
Notifications
You must be signed in to change notification settings - Fork 2
/
hw3s.tex
executable file
·4283 lines (3896 loc) · 167 KB
/
hw3s.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[numbers=enddot,12pt,final,onecolumn,notitlepage]{scrartcl}%
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[all,cmtip]{xy}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{framed}
\usepackage{comment}
\usepackage{color}
\usepackage{hyperref}
\usepackage{ifthen}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{needspace}
\usepackage{tabls}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2960}
%TCIDATA{LastRevised=Friday, September 16, 2016 20:39:00}
%TCIDATA{SuppressPackageManagement}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%TCIDATA{Language=American English}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\newcounter{exer}
\theoremstyle{definition}
\newtheorem{theo}{Theorem}[section]
\newenvironment{theorem}[1][]
{\begin{theo}[#1]\begin{leftbar}}
{\end{leftbar}\end{theo}}
\newtheorem{lem}[theo]{Lemma}
\newenvironment{lemma}[1][]
{\begin{lem}[#1]\begin{leftbar}}
{\end{leftbar}\end{lem}}
\newtheorem{prop}[theo]{Proposition}
\newenvironment{proposition}[1][]
{\begin{prop}[#1]\begin{leftbar}}
{\end{leftbar}\end{prop}}
\newtheorem{defi}[theo]{Definition}
\newenvironment{definition}[1][]
{\begin{defi}[#1]\begin{leftbar}}
{\end{leftbar}\end{defi}}
\newtheorem{remk}[theo]{Remark}
\newenvironment{remark}[1][]
{\begin{remk}[#1]\begin{leftbar}}
{\end{leftbar}\end{remk}}
\newtheorem{coro}[theo]{Corollary}
\newenvironment{corollary}[1][]
{\begin{coro}[#1]\begin{leftbar}}
{\end{leftbar}\end{coro}}
\newtheorem{conv}[theo]{Convention}
\newenvironment{condition}[1][]
{\begin{conv}[#1]\begin{leftbar}}
{\end{leftbar}\end{conv}}
\newtheorem{quest}[theo]{Question}
\newenvironment{algorithm}[1][]
{\begin{quest}[#1]\begin{leftbar}}
{\end{leftbar}\end{quest}}
\newtheorem{warn}[theo]{Warning}
\newenvironment{conclusion}[1][]
{\begin{warn}[#1]\begin{leftbar}}
{\end{leftbar}\end{warn}}
\newtheorem{conj}[theo]{Conjecture}
\newenvironment{conjecture}[1][]
{\begin{conj}[#1]\begin{leftbar}}
{\end{leftbar}\end{conj}}
\newtheorem{exam}[theo]{Example}
\newenvironment{example}[1][]
{\begin{exam}[#1]\begin{leftbar}}
{\end{leftbar}\end{exam}}
\newtheorem{exmp}[exer]{Exercise}
\newenvironment{exercise}[1][]
{\begin{exmp}[#1]\begin{leftbar}}
{\end{leftbar}\end{exmp}}
\newenvironment{statement}{\begin{quote}}{\end{quote}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\let\cupnonlimits\bigcup
\let\capnonlimits\bigcap
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\renewcommand{\bigcup}{\cupnonlimits\limits}
\renewcommand{\bigcap}{\capnonlimits\limits}
\setlength\tablinesep{3pt}
\setlength\arraylinesep{3pt}
\setlength\extrarulesep{3pt}
\voffset=0cm
\hoffset=-0.7cm
\setlength\textheight{22.5cm}
\setlength\textwidth{15.5cm}
\newenvironment{verlong}{}{}
\newenvironment{vershort}{}{}
\newenvironment{noncompile}{}{}
\excludecomment{verlong}
\includecomment{vershort}
\excludecomment{noncompile}
\newcommand{\id}{\operatorname{id}}
\newcommand{\rev}{\operatorname{rev}}
\newcommand{\conncomp}{\operatorname{conncomp}}
\newcommand{\conn}{\operatorname{conn}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\powset}[2][]{\ifthenelse{\equal{#2}{}}{\mathcal{P}\left(#1\right)}{\mathcal{P}_{#1}\left(#2\right)}}
% $\powset[k]{S}$ stands for the set of all $k$-element subsets of
% $S$. The argument $k$ is optional, and if not provided, the result
% is the whole powerset of $S$.
\newcommand{\set}[1]{\left\{ #1 \right\}}
% $\set{...}$ yields $\left\{ ... \right\}$.
\newcommand{\abs}[1]{\left| #1 \right|}
% $\abs{...}$ yields $\left| ... \right|$.
\newcommand{\tup}[1]{\left( #1 \right)}
% $\tup{...}$ yields $\left( ... \right)$.
\newcommand{\ive}[1]{\left[ #1 \right]}
% $\ive{...}$ yields $\left[ ... \right]$.
\newcommand{\verts}[1]{\operatorname{V}\left( #1 \right)}
% $\verts{...}$ yields $\operatorname{V}\left( ... \right)$.
\newcommand{\edges}[1]{\operatorname{E}\left( #1 \right)}
% $\edges{...}$ yields $\operatorname{E}\left( ... \right)$.
\newcommand{\arcs}[1]{\operatorname{A}\left( #1 \right)}
% $\arcs{...}$ yields $\operatorname{A}\left( ... \right)$.
\newcommand{\leaves}[1]{\operatorname{Leaves}\left( #1 \right)}
% $\leaves{...}$ yields $\operatorname{Leaves}\left( ... \right)$.
\newcommand{\underbrack}[2]{\underbrace{#1}_{\substack{#2}}}
% $\underbrack{...1}{...2}$ yields
% $\underbrace{...1}_{\substack{...2}}$. This is useful for doing
% local rewriting transformations on mathematical expressions with
% justifications.
\newcommand{\are}{\ar@{-}}
% In an xymatrix environment, $\are$ gives an arrow without
% arrowhead. I use this to represent edges in graphs.
\newcommand{\spann}[1]{\operatorname{span}\left( #1 \right)}
% \spann{...}$ yields $\operatorname{span}\left( ... \right)$.
\ihead{Math 5707 Spring 2017 (Darij Grinberg): homework set 3}
\ohead{page \thepage}
\cfoot{}
\begin{document}
\begin{center}
\textbf{Math 5707 Spring 2017 (Darij Grinberg): homework set 3}
\textbf{Solution sketches (DRAFT).}
\end{center}
\tableofcontents
\subsection{Reminders}
See the
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf}{lecture notes}
and also the
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/}{handwritten notes}
for relevant material.
See also
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf}{the solutions to homework set 2}
for various conventions and notations that are in use here.
If $G = \tup{V, E, \phi}$ is a multigraph, and if $v \in V$ and
$e \in E$, then the edge $e$ is said to be \textit{incident} to
the vertex $v$ (in the multigraph $G$) if and only if
$v \in \phi\tup{e}$ (in other words, if and only if $v$ is an
endpoint of $e$).
\subsection{Exercise \ref{exe.hw3.centerlp}: Centers of trees lie on
longest paths}
If $v$ is a vertex of a simple graph $G = \tup{V, E}$, then the
\textit{eccentricity} of $v$ is defined to be
$\max \set{ d\tup{v, u} \mid u \in V }$ (where $d\tup{v, u}$ is the
distance between $v$ and $u$, as usual). A \textit{center} of a simple
graph $G$ means a vertex whose eccentricity is minimum (among the
eccentricities of all vertices).
\begin{exercise} \label{exe.hw3.centerlp}
Let $T$ be a tree. Let $\tup{v_0, v_1, \ldots, v_k}$ be a longest path
of $T$. Prove that each center of $T$ belongs to this path (i.e., is
one of the vertices $v_0, v_1, \ldots, v_k$).
\end{exercise}
In preparation for the solution of this exercise, we cite a result
from
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec10.pdf}{lecture 10}:
\begin{proposition} \label{prop.hw3.centerlp.center-ind}
Let $T$ be a tree with $\geq 3$ vertices.
Let $L$ be the set of all leaves of $T$.
Let $T \setminus L$ be the multigraph obtained from $T$ by removing
the vertices in $L$ and all edges incident to them.
The eccentricity of a vertex $v$ of a graph $G$ will be denoted by
$\operatorname{ecc}_G v$.
\textbf{(a)} The graph $T \setminus L$ is a tree.
\textbf{(b)} Each vertex $v$ of $T \setminus L$ satisfies
$\operatorname{ecc}_T v = \operatorname{ecc}_{T \setminus L} v + 1$.
\textbf{(c)} Each $v \in L$ satisfies
$\operatorname{ecc}_T v = \operatorname{ecc}_T w + 1$,
where $w$ is the unique neighbor of $v$ in $T$.
\textbf{(d)} The centers of $T$ are precisely the centers of
$T \setminus L$.
\end{proposition}
We contrast this with the following simple fact:
\begin{proposition} \label{prop.hw3.centerlp.lopa-ind}
Let $T$ be a tree with $\geq 3$ vertices.
Let $L$ be the set of all leaves of $T$.
Let $T \setminus L$ be the multigraph obtained from $T$ by removing
the vertices in $L$ and all edges incident to them.
Let $\tup{v_0, v_1, \ldots, v_k}$ be a longest path of $T$.
Then, $\tup{v_1, v_2, \ldots, v_{k-1}}$ is a longest path of
$T \setminus L$.
\end{proposition}
\begin{proof}[Proof of Proposition~\ref{prop.hw3.centerlp.lopa-ind}
(sketched).]
For each $i \in \set{1, 2, \ldots, k-1}$, the vertex $v_i$ is a vertex
of $T \setminus L$ \ \ \ \ \footnote{\textit{Proof.}
Let
$i \in \set{1, 2, \ldots, k-1}$.
Then, $v_{i-1} v_i$ and $v_i v_{i+1}$ are two distinct edges
of $T$ (since $\tup{v_0, v_1, \ldots, v_k}$ is a path of $T$).
Hence, the vertex $v_i$ of $T$
belongs to at least two distinct edges (namely, $v_{i-1} v_i$ and
$v_i v_{i+1}$), and thus is not a leaf of $T$.
In other words, $v_i$ is not an element of $L$.
Hence, $v_i$ is a vertex of $T \setminus L$.}.
Hence, $\tup{v_1, v_2, \ldots, v_{k-1}}$ is a path of
$T \setminus L$.
It remains to prove that it is a \textbf{longest} path.
Indeed, assume the contrary.
Hence, there exists a longest path
$\tup{w_1, w_2, \ldots, w_m}$ of $T \setminus L$ whose length $m-1$
is greater than the length $k-2$ of the path
$\tup{v_1, v_2, \ldots, v_{k-1}}$.
Consider such a path.
From $m-1 > k-2$, we obtain $m > k-1$. Hence, $m \geq k$.
The vertex $w_1$ must be a leaf of $T \setminus L$ (since otherwise,
it would have a neighbor distinct from $w_2$, which would then allow
us to extend the path $\tup{w_1, w_2, \ldots, w_m}$ by attaching
this neighbor to its front; but this would contradict the fact that
this path $\tup{w_1, w_2, \ldots, w_m}$ is a longest path of
$T \setminus L$).
But the vertex $w_1$ cannot be a leaf of $T$ (since in this case,
it would belong to $L$, and hence could not be a vertex
of $T \setminus L$).
Hence, the vertex $w_1$ has at least one more neighbor in $T$ than
it has in $T \setminus L$ (because it is a leaf of $T \setminus L$
but not of $T$).
Therefore, the vertex $w_1$ has at least one neighbor in $T$ that is
not a vertex of $T \setminus L$.
Fix such a neighbor, and denote it by $w_0$.
This neighbor $w_0$ must lie in $L$ (since it is not a vertex of
$T \setminus L$).
Similarly, the vertex $w_m$ has at least one neighbor in $T$ that is
not a vertex of $T \setminus L$.
Fix such a neighbor, and denote it by $w_{m+1}$.
This neighbor $w_{m+1}$ must lie in $L$ (since it is not a vertex of
$T \setminus L$).
Now, $\tup{w_0, w_1, \ldots, w_{m+1}}$ is a walk in $T$.
Furthermore, all the $m+2$ vertices of this walk are
distinct\footnote{\textit{Proof.}
First, we notice that the $m$
vertices $w_1, w_2, \ldots, w_m$ are distinct (since
$\tup{w_1, w_2, \ldots, w_m}$ is a path of $T \setminus L$).
Second, we observe that the two vertices $w_0$ and $w_{m+1}$ are
distinct from the $m$ vertices $w_1, w_2, \ldots, w_m$ (since the
former lie in $L$, whereas the latter are vertices of
$T \setminus L$).
Thus, it only remains to prove that the vertices $w_0$ and $w_{m+1}$
are distinct.
But this is easy:
If they were not, then the walk $\tup{w_0, w_1, \ldots, w_{m+1}}$
would be a cycle; but this would contradict the fact that $T$ has no
cycles (since $T$ is a tree).
Thus, we have shown that all the $m+2$ vertices of the walk
$\tup{w_0, w_1, \ldots, w_{m+1}}$ are distinct.}.
Hence, this walk is a path.
This path has length $m+1 > m \geq k$, and thus is longer than the
path $\tup{v_0, v_1, \ldots, v_k}$.
But this is absurd, since the latter path is a longest path of $T$.
Hence, we have found a contradiction, which is precisely what we
wanted to find.
The proof is thus complete.
\end{proof}
\begin{proof}[Hints to Exercise~\ref{exe.hw3.centerlp}.]
Proceed by strong induction on $\abs{\verts{T}}$.
Thus, fix $N \in \NN$, and assume (as the induction hypothesis) that
Exercise~\ref{exe.hw3.centerlp} has already been solved for all
trees $T$ satisfying $\abs{\verts{T}} < N$.
Now, fix a tree $T$ satisfying $\abs{\verts{T}} = N$.
We must prove that Exercise~\ref{exe.hw3.centerlp} holds for this
particular tree $T$.
If $\abs{\verts{T}} < 3$, then this is obvious (because in this case,
each vertex of $T$ lies on the longest path
$\tup{v_0, v_1, \ldots, v_k}$).
Thus, we WLOG assume that $\abs{\verts{T}} \geq 3$.
Let $L$ be the set of all leaves of $T$. Thus, $\abs{L} \geq 2$
(since $T$ has at least two leaves (since $T$ is a tree with at least
$2$ vertices)).
Let $T \setminus L$ be the multigraph obtained from $T$ by removing
the vertices in $L$ and all edges incident to them.
Proposition~\ref{prop.hw3.centerlp.center-ind} \textbf{(a)} shows that
the graph $T \setminus L$ is a tree.
Proposition~\ref{prop.hw3.centerlp.center-ind} \textbf{(d)} shows that
the centers of $T$ are precisely the centers of $T \setminus L$.
Let $\tup{v_0, v_1, \ldots, v_k}$ be a longest path of $T$.
Proposition~\ref{prop.hw3.centerlp.lopa-ind} shows that
$\tup{v_1, v_2, \ldots, v_{k-1}}$ is a longest path of
$T \setminus L$.
Clearly, $\verts{T \setminus L} = \verts{T} \setminus L$, so that
$\abs{\verts{T \setminus L}} = \abs{\verts{T} \setminus L}
= \underbrace{\abs{\verts{T}}}_{= N}
- \underbrace{\abs{L}}_{\geq 2 > 0}
< N$.
Hence, the induction hypothesis shows that
Exercise~\ref{exe.hw3.centerlp} holds for $T \setminus L$ instead of
$T$.
Thus, we can apply Exercise~\ref{exe.hw3.centerlp} to
$T \setminus L$ and $\tup{v_1, v_2, \ldots, v_{k-1}}$ instead of
$T$ and $\tup{v_0, v_1, \ldots, v_k}$.
We thus conclude that each center of $T \setminus L$ belongs to the
path $\tup{v_1, v_2, \ldots, v_{k-1}}$.
Since the centers of $T$ are precisely the centers of $T \setminus L$,
we can rewrite this as follows:
Each center of $T$ belongs to the path
$\tup{v_1, v_2, \ldots, v_{k-1}}$.
Thus, each center of $T$ belongs to the path
$\tup{v_0, v_1, \ldots, v_k}$ as well (since the latter path contains
the former path).
In other words, Exercise~\ref{exe.hw3.centerlp} holds for our
particular tree $T$.
This completes the induction; thus, Exercise~\ref{exe.hw3.centerlp} is
solved.
\end{proof}
% \begin{proof}[Hints to Exercise~\ref{exe.hw3.centerlp}.]
% Let $c$ be a center of $T$. We must prove that $c$ belongs to the
% path $\tup{v_0, v_1, \ldots, v_k}$. In other words, we must prove that
% $c \in \set{v_0, v_1, \ldots, v_k}$.
%
% The eccentricity of any vertex $v$ of $G$ shall be denoted by
% $\operatorname{ecc} v$. Then, it is easy to see that each
% $i \in \set{0, 1, \ldots, k}$ satisfies
% \begin{equation}
% \operatorname{ecc} \tup{v_i}
% = \max \set{i, k-i}
% \label{sol.hw3.centerlp.1}
% \end{equation}
% \footnote{In order to prove \eqref{sol.hw3.centerlp.1}, fix
% $i \in \set{0, 1, \ldots, k}$.
% Combining
% $\operatorname{ecc} \tup{v_i} \geq d \tup{v_i, v_0} = i$ with
% $\operatorname{ecc} \tup{v_i} \geq d \tup{v_i, v_k} = k-i$, we obtain
% $\operatorname{ecc} \tup{v_i} \geq \max \set{i, k-i}$.
% It thus remains to check that
% $\operatorname{ecc} \tup{v_i} \leq \max \set{i, k-i}$.
% To do so, we assume the contrary.
% Thus, $\operatorname{ecc} \tup{v_i} > \max \set{i, k-i}$.
% Now, there exists some vertex $u$ such that
% $d \tup{v_i, u} = \operatorname{ecc} \tup{v_i}$ (by the definition of
% $\operatorname{ecc} \tup{v_i}$).
% Consider such a $u$.
% We have
% $d \tup{v_i, u} = \operatorname{ecc} \tup{v_i} > \max \set{i, k-i}$.
% Hence, $d \tup{v_i, u} > i$ and $d \tup{v_i, u} > k-i$.
% Now, the path from $v_i$ to $u$ either has no vertex (besides $v_i$)
% in common with
% the path from $v_0$ to $v_i$, or has no vertex in common with the
% path from $v_k$ to $v_i$, or both (because if it simultaneously had a
% vertex in common with the path from $v_0$ to $v_i$ and a vertex in
% common with the path from $v_k$ to $v_i$,
% such
% The vertex $v_i$ has distance $i$ from
% $v_0$ and distance $k-i$ from $v_k$; therefore, it has distance
% $\max \set{i, k-i}$ from one (etc.)
% (This would be nice, but doesn't work!)
% \end{proof}
\newpage
\subsection{Exercise \ref{exe.hw3.countST}: Counting spanning trees in
some cases}
\begin{exercise} \label{exe.hw3.countST}
\textbf{(a)} Consider the cycle graph $C_n$ for some $n \geq 2$. Its
vertices are $1, 2, \ldots, n$, and its edges are $12, 23, \ldots,
\tup{n-1}n, n1$. (Here is how it looks for $n = 5$:
\[
\xymatrix{
& & 1 \ar@{-}[rrd] \\
5 \ar@{-}[rru] \ar@{-}[rd] & & & & 2 \ar@{-}[ld] \\
& 4 \ar@{-}[rr] & & 3
}
\]
)
Find the number of spanning trees of $C_n$.
\textbf{(b)} Consider the directed cycle graph $\overrightarrow{C}_n$
for some $n \geq 2$. It is a digraph; its vertices are
$1, 2, \ldots, n$, and its arcs are $12, 23, \ldots, \tup{n-1}n, n1$.
(Here is how it looks for $n = 5$:
\[
\xymatrix{
& & 1 \ar[rrd] \\
5 \ar[rru] & & & & 2 \ar[ld] \\
& 4 \ar[lu] & & 3 \ar[ll]
}
\]
)
Find the number of oriented spanning trees of $\overrightarrow{C}_n$
with root $1$.
\textbf{(c)} Fix $m \geq 1$. Let $G$ be the simple graph with $3m+2$
vertices
\[
a, b, x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_m, z_1, z_2, \ldots,
z_m
\]
and the following $3m+3$ edges:
\begin{align*}
& ax_1, ay_1, az_1, \\
& x_i x_{i+1}, y_i y_{i+1}, z_i z_{i+1} \qquad \text{ for all }
i \in \set{1, 2, \ldots, m-1}, \\
& x_m b, y_m b, z_m b .
\end{align*}
(Thus, the graph consists of two vertices $a$ and $b$ connected by
three paths, each of length $m+1$, with no overlaps between the paths
except for their starting and ending points. Here is a picture for
$m = 3$:
\[
\xymatrix{
& x_1 \ar@{-}[r] & x_2 \ar@{-}[r] & x_3 \ar@{-}[dr] \\
a \ar@{-}[r] \ar@{-}[ru] \ar@{-}[rd] & y_1 \ar@{-}[r] & y_2 \ar@{-}[r] & y_3 \ar@{-}[r] & b \\
& z_1 \ar@{-}[r] & z_2 \ar@{-}[r] & z_3 \ar@{-}[ru]
}
\]
)
Compute the number of spanning trees of $G$.
[To argue why your number is correct, a sketch of the argument in 1-2
sentences should be enough; a fully rigorous proof is not required.]
\end{exercise}
\begin{proof}[Hints to Exercise~\ref{exe.hw3.countST}.]
\textbf{(a)} The number is $n$.
Indeed, any graph obtained from $C_n$ by removing a single edge is a
spanning tree of $C_n$.
[\textit{Proof:} Recall that a tree
with $n$ vertices must have exactly $n-1$ edges.
Thus, a spanning subgraph of $C_n$ can be a tree only if it has
$n-1$ edges,
i.e., only if it is obtained from $C_n$ by removing a single edge.
It only remains to check that any subgraph obtained from $C_n$ by
removing a single edge is indeed a spanning tree.
But this is easy, since all such subgraphs are isomorphic to the path
graph $P_n$.]
\textbf{(b)} The number is $1$.
Indeed, the only oriented spanning tree of $\overrightarrow{C}_n$ with
root $1$ is the subdigraph of $\overrightarrow{C}_n$ obtained by
removing the arc $12$.
[\textit{Proof:} How can an oriented spanning tree of
$\overrightarrow{C}_n$ with root $1$ look like?
It must have no arc with source $1$ (since $1$ is its root), so it
must not contain the arc $12$.
But it must contain a walk from $i$ to $1$ for each vertex
$i \in \set{2, 3, \ldots, n}$.
Thus, it must contain at least one arc with source $i$ for each
$i \in \set{2, 3, \ldots, n}$ (because otherwise, we would have no way
to get out of $i$, and this would render a walk from $i$ to $1$
impossible).
This arc clearly must be $i \tup{i+1}$, where we set $n+1 = 1$
(because the only arc with source $i$ in $\overrightarrow{C}_n$ is the
arc $i \tup{i+1}$).
Hence, our oriented spanning tree must not contain the arc $12$, but
it must contain the arc $i \tup{i+1}$ for each
$i \in \set{2, 3, \ldots, n}$.
This uniquely defines this oriented spanning tree.
Conversely, it is trivial that the subdigraph of
$\overrightarrow{C}_n$ obtained by removing the arc $12$ is indeed an
oriented spanning tree.]
\textbf{(c)} The number is $3 \tup{m+1}^2$.
Indeed, let $\mathbf{x}$, $\mathbf{y}$ and $\mathbf{z}$ be the three
paths $\tup{a, x_1, x_2, \ldots, x_m, b}$,
$\tup{a, y_1, y_2, \ldots, y_m, b}$ and
$\tup{a, z_1, z_2, \ldots, z_m, b}$.
Then, the spanning trees of $G$ are the subgraphs of $G$ obtained
\begin{itemize}
\item either by removing an edge from $\mathbf{x}$ and an edge from
$\mathbf{y}$ (there are $\tup{m+1}^2$ ways to do that);
\item or by removing an edge from $\mathbf{x}$ and an edge from
$\mathbf{z}$ (there are $\tup{m+1}^2$ ways to do that);
\item or by removing an edge from $\mathbf{y}$ and an edge from
$\mathbf{z}$ (there are $\tup{m+1}^2$ ways to do that).
\end{itemize}
[\textit{Proof:} The graph $G$ has $3m+2$ vertices.
Hence, any spanning tree of $G$ must have $\tup{3m+2}-1 = 3m+1$ edges.
This means that any spanning tree of $G$ can be obtained from $G$ by
removing two edges (since $G$ has $3m+3$ edges).
But not each pair of edges yields a spanning tree when removed.
Which ones do, and which ones do not?
\begin{itemize}
\item If we remove two edges from $\mathbf{x}$, then the subgraph is
not connected (indeed, at least one vertex on the path
$\mathbf{x}$ lies between these two edges, and this vertex is
disconnected from $a$ in this subgraph), and thus not a tree.
The same problem happens if we remove two edges from
$\mathbf{y}$ or two edges from $\mathbf{z}$.
\item If we remove an edge from $\mathbf{x}$ and an edge from
$\mathbf{y}$, then the subgraph is connected (because any
vertex is still connected to at least one of $a$ and $b$, but
$a$ and $b$ are also still connected to each other via the
undamaged path $\mathbf{z}$), and thus is a spanning tree of $G$
(since it is connected and has the ``right'' number of edges).
The same happens if we remove an
edge from $\mathbf{x}$ and an edge from $\mathbf{z}$, or if we
remove an edge from $\mathbf{y}$ and an edge from $\mathbf{z}$.
\end{itemize}
There are no other cases.
Thus, tallying these possibilities, we obtain the characterization of
spanning trees given above, and thus there are
$\tup{m+1}^2 + \tup{m+1}^2 + \tup{m+1}^2 = 3 \tup{m+1}^2$ spanning
trees.]
\end{proof}
[\textit{Remark:} I guess that parts \textbf{(a)} and \textbf{(c)} of
Exercise~\ref{exe.hw3.countST} can also be solved using the
Matrix-Tree Theorem. But the solutions given above are definitely
easier!]
\subsection{Exercise \ref{exe.hw3.conn}: The number of connected
components is supermodular}
\subsubsection{Statement of the problem}
We first recall how the connected components of a multigraph were
defined:
\begin{definition}
Let $G = \tup{V, E, \phi}$ be a multigraph.
\textbf{(a)} We define a binary relation $\simeq_G$ on the set $V$
as follows:
For two vertices $u$ and $v$ in $V$, we set $u \simeq_G v$ if and
only if there exists a walk from $u$ to $v$ in $G$.
\textbf{(b)} The binary relation $\simeq_G$ is an equivalence
relation on $V$.
Its equivalence classes are called the \textit{connected components}
of $G$.
\end{definition}
\begin{definition} \label{def.hw3.conn}
If $G$ is a multigraph, then $\conn G$ shall denote the
number of connected components of $G$.
(We have previously called this number $b_0 \tup{G}$ in lecture notes.
Note that it equals $0$ when $G$
has no vertices, and $1$ if $G$ is connected.)
\end{definition}
\begin{exercise} \label{exe.hw3.conn}
Let $\tup{V, H, \phi}$ be a multigraph. Let $E$ and $F$ be two
subsets of $H$.
\textbf{(a)} Prove that
\begin{align}
& \conn \tup{V, E, \phi\mid_E}
+ \conn \tup{V, F, \phi\mid_F} \nonumber \\
& \leq
\conn \tup{V, E \cup F, \phi\mid_{E \cup F}}
+ \conn \tup{V, E \cap F, \phi\mid_{E \cap F}} .
\label{eq.exe.hw3.conn.ineq}
\end{align}
\textbf{(b)} Give an example where the inequality
\eqref{eq.exe.hw3.conn.ineq} does \textbf{not} become an equality.
\end{exercise}
\subsubsection{Hints}
\begin{remark}
The following two hints are helpful for
solving Exercise~\ref{exe.hw3.conn} \textbf{(a)}:
\begin{itemize}
\item
Feel free to restrict yourself to the case of a simple graph; in this
case, $E$ and $F$ are two subsets of $\powset[2]{V}$, and you have to
show that
\[
\conn \tup{V, E} + \conn \tup{V, F}
\leq \conn \tup{V, E \cup F}
+ \conn \tup{V, E \cap F} .
\]
This isn't any easier than the general case, but saves you the hassle
of carrying the map $\phi$ around.
\item
Also, feel free to take inspiration from the
\href{http://math.stackexchange.com/questions/500511/dimension-of-the-sum-of-two-vector-subspaces}{proof
of the classical fact that
$\dim X + \dim Y = \dim \tup{X + Y} + \dim \tup{X \cap Y}$ when $X$
and $Y$ are two subspaces of a finite-dimensional vector space $U$}.
That proof relies on choosing a basis of $X \cap Y$ and extending it
to bases of $X$ and $Y$, then merging the extended bases to a basis of
$X + Y$. A ``basis'' of a multigraph $G$ is a spanning forest: a
spanning subgraph that is a forest and has the same number of
connected components as $G$. More precisely, it is the set of the
edges of a spanning forest.
Actually, the second solution to Exercise~\ref{exe.hw3.conn}
sketched below follows this idea (of imitating the proof of
$\dim X + \dim Y = \dim \tup{X + Y} + \dim \tup{X \cap Y}$),
whereas the third solution uses the identity
$\dim X + \dim Y = \dim \tup{X + Y} + \dim \tup{X \cap Y}$
itself.
\end{itemize}
\end{remark}
\subsubsection{First solution}
The following solution to Exercise~\ref{exe.hw3.conn} is probably
the most conventional one.
It is rather long due to the fact that certain properties of
connected components, while being obvious to the eye and easy to
explain with some handwaving, are painstakingly difficult to
rigorously formulate.
Despite its length, a few details are left to the reader (but they
should be easy to fill in).
We prepare for the solution of Exercise~\ref{exe.hw3.conn} with a
definition and two simple lemmas:
\begin{definition} \label{def.hw3.conn.G-e}
Let $G = \tup{V, E, \phi}$ be a multigraph.
Let $e$ be an edge of $G$.
Then, $G - e$ will denote the multigraph obained from $G$ by
removing the edge $e$.
(Formally speaking, $G - e$ is the multigraph
$\tup{V, E \setminus \set{e}, \phi\mid_{E \setminus \set{e}}}$.)
\end{definition}
Similar notations are used for simple graphs, for digraphs,
and for multidigraphs.
\begin{lemma} \label{lem.hw3.conn.uG-ev}
Let $G = \tup{V, E, \phi}$ be a multigraph.
Let $e$ be an edge of $G$.
Let $u \in V$ and $v \in V$ be such that
$u \simeq_G v$.
Assume that we do not have $u \simeq_{G - e} v$.
Then, there exist $x \in V$ and $y \in V$ such that
$\phi\tup{e} = \set{x, y}$ and $u \simeq_{G - e} x$ and
$v \simeq_{G - e} y$.
\end{lemma}
\begin{proof}[Proof of Lemma~\ref{lem.hw3.conn.uG-ev}.]
We do not have $u \simeq_{G - e} v$.
In other words, there exists no walk from $u$ to $v$ in
$G - e$.
But $u \simeq_G v$.
Thus, there exists a walk from $u$ to $v$ in $G$.
Hence, there exists a path from $u$ to $v$ in $G$.
Fix such a path.
Write this path in the form
$\tup{p_0, e_1, p_1, e_2, p_2, \ldots, e_k, p_k}$ with
$p_0 = u$ and $p_k = v$.
This path must contain the edge $e$ (since otherwise, it would
be a path in $G - e$, thus also a walk in $G - e$; but this
would contradict the fact that
there exists no walk from $u$ to $v$ in $G - e$).
In other words, $e_i = e$ for some
$i \in \set{1, 2, \ldots, k}$.
Consider this $i$.
The edges $e_1, e_2, \ldots, e_k$ are the edges of the path
$\tup{p_0, e_1, p_1, e_2, p_2, \ldots, e_k, p_k}$, and thus are
distinct (since the edges of a path are always distinct).
Hence, none of the edges
$e_1, e_2, \ldots, e_{i-1}, e_{i+1}, e_{i+2}, \ldots, e_k$
equals $e_i$.
Since $e_i = e$, this rewrites as follows:
None of the edges
$e_1, e_2, \ldots, e_{i-1}, e_{i+1}, e_{i+2}, \ldots, e_k$
equals $e$.
Thus, all of the edges
$e_1, e_2, \ldots, e_{i-1}, e_{i+1}, e_{i+2}, \ldots, e_k$
are edges of the multigraph $G - e$.
Hence, the two
subwalks\footnote{Here, a \textit{subwalk} of a walk
$\tup{w_0, f_1, w_1, f_2, w_2, \ldots, f_m, w_m}$ means a
list of the form
$\tup{w_I, f_{I+1}, w_{I+1}, f_{I+2}, w_{I+2}, \ldots, f_J, w_J}$
for two elements $I$ and $J$ of $\set{0, 1, \ldots, m}$
satisfying $I \leq J$.
Such a list is always a walk.}
$\tup{p_0, e_1, p_1, e_2, p_2, \ldots, e_{i-1}, p_{i-1}}$
and
$\tup{p_i, e_{i+1}, p_{i+1}, e_{i+2}, p_{i+2}, \ldots, e_k, p_k}$
of the path
$\tup{p_0, e_1, p_1, e_2, p_2, \ldots, e_k, p_k}$
are walks in $G - e$.
Now, there exists a walk from $p_0$ to $p_{i-1}$ in $G - e$
(namely, the walk \newline
$\tup{p_0, e_1, p_1, e_2, p_2, \ldots, e_{i-1}, p_{i-1}}$).
In other words, $p_0 \simeq_{G - e} p_{i-1}$.
Since $p_0 = u$, this rewrites as $u \simeq_{G - e} p_{i-1}$.
Also, there exists a walk from $p_i$ to $p_k$ in $G - e$
(namely, the walk \newline
$\tup{p_i, e_{i+1}, p_{i+1}, e_{i+2}, p_{i+2}, \ldots, e_k, p_k}$).
In other words, $p_i \simeq_{G - e} p_k$.
Since $\simeq_{G - e}$ is an equivalence relation, this shows
that $p_k \simeq_{G - e} p_i$.
Since $p_k = v$, this rewrites as $v \simeq_{G - e} p_i$.
We have $\phi\tup{e_i} = \set{p_{i-1}, p_i}$ (since
$\tup{p_0, e_1, p_1, e_2, p_2, \ldots, e_k, p_k}$ is a path).
Therefore, $\set{p_{i-1}, p_i} = \phi\tup{e_i} = \phi\tup{e}$
(since $e_i = e$). Hence,
$\phi\tup{e} = \set{p_{i-1}, p_i}$.
Thus, there exist $x \in V$ and $y \in V$ such that
$\phi\tup{e} = \set{x, y}$ and $u \simeq_{G - e} x$ and
$v \simeq_{G - e} y$ (namely, $x = p_{i-1}$ and $y = p_i$).
This proves Lemma~\ref{lem.hw3.conn.uG-ev}.
\end{proof}
\begin{lemma} \label{lem.hw3.conn.oneless}
Let $G = \tup{V, E, \phi}$ be a multigraph.
Let $e$ be an edge of $G$.
Let us use the Iverson bracket notation.
Then,
\[
\conn \tup{G - e}
= \conn G
+ \ive{e \text{ belongs to no cycle of } G} .
\]
\end{lemma}
\begin{proof}[Proof of Lemma~\ref{lem.hw3.conn.oneless} (sketched).]
Consider the two relations $\simeq_G$ and $\simeq_{G - e}$.
(Recall that two vertices $u$ and $v$ of $G$ satisfy $u \simeq_G v$
if and only if there exists a walk from $u$ to $v$ in $G$.
The relation $\simeq_{G - e}$ is defined similarly, but using $G - e$
instead of $G$.)
The connected components of $G$ are the equivalence classes of the
relation $\simeq_G$.
The connected components of $G - e$ are the equivalence classes of the
relation $\simeq_{G - e}$.
Every two vertices $u \in V$ and $v \in V$
satisfying $u \simeq_{G - e} v$ satisfy $u \simeq_G v$
\ \ \ \ \footnote{\textit{Proof.} Let $u \in V$ and $v \in V$
be two vertices satisfying $u \simeq_{G - e} v$.
We must show that $u \simeq_G v$. \par
We know that $u \simeq_{G - e} v$.
In other words, there exists a walk from $u$ to $v$ in
$G - e$.
This walk is clearly also a walk from $u$ to $v$ in $G$
(since $G - e$ is a submultigraph of $G$).
Hence, there exists a walk from $u$ to $v$ in $G$.
In other words, $u \simeq_G v$.}.
We shall use the notation $\conncomp_H w$ for the connected component
of a multigraph $H$ containing a given vertex $w$.
Thus, for each vertex $v \in V$, we have a connected component
$\conncomp_{G - e} v$ and a connected component
$\conncomp_G v$.
These two connected components satisfy
\[
\conncomp_{G - e} v \subseteq \conncomp_G v
\]
(because all vertices $u \in \conncomp_{G - e} v$ satisfy
$u \simeq_{G - e} v$, thus $u \simeq_G v$, thus
$u \in \conncomp_G v$); but the reverse inclusion might not hold.
Hence, each connected component of $G$ is a union
of a nonzero number (possibly just one, but possibly more) of
connected components of $G - e$.
Write the set $\phi\tup{e} \in \powset[2]{V}$ in the form
$\phi\tup{e} = \set{a, b}$.
We are in one of the following two cases:
\textit{Case 1:} The edge $e$ belongs to no cycle of $G$.
\textit{Case 2:} The edge $e$ belongs to at least one cycle of $G$.
We shall treat these two cases separately:
\begin{itemize}
\item Let us first consider Case 1.
In this case, the edge $e$ belongs to no cycle of $G$.
Then, we do not have $a \simeq_{G - e} b$
\ \ \ \ \footnote{\textit{Proof.} Assume the contrary. Thus,
we have $a \simeq_{G - e} b$.
In other words, there exists a walk from $a$ to $b$ in
$G - e$.
Hence, there exists a path from $a$ to $b$ in $G - e$.
Combining this path with the edge $e$, we obtain a cycle of
$G$ that contains the edge $e$.
Thus, the edge $e$ belongs to at least one cycle of $G$
(namely, to the cycle we have just constructed).
This contradicts the fact that the edge $e$ belongs to no
cycle of $G$.}.
Hence, $\conncomp_{G - e} a \neq \conncomp_{G - e} b$.
But we do have $a \simeq_G b$ (because the edge
$e$ provides a walk $\tup{a, e, b}$ from $a$ to $b$ in $G$).
% and thus $\conncomp_G a = \conncomp_G b$.
% Furthermore, if two vertices $u \in V$ and $v \in V$ satisfy
% $u \simeq_G v$ but not $u \simeq_{G - e} v$,
% then
% \begin{equation}
% u \text{ and } v \text{ both belong to the set }
% \tup{\conncomp_{G - e} a} \cup \tup{\conncomp_{G - e} b}
% \label{pf.lem.hw3.conn.oneless.c1.1}
% \end{equation}
% \footnote{\textit{Proof.} Let $u \in V$ and $v \in V$
% be two vertices that satisfy
% $u \simeq_G v$ but not $u \simeq_{G - e} v$.
% We must show that $u$ and $v$ both belong to the set
% $\tup{\conncomp_{G - e} a} \cup \tup{\conncomp_{G - e} b}$.
% \par Lemma~\ref{lem.hw3.conn.uG-ev} shows that
% there exist $x \in V$ and $y \in V$ such that
% $\phi\tup{e} = \set{x, y}$ and $u \simeq_{G - e} x$ and
% $v \simeq_{G - e} y$. Consider these $x$ and $y$.
% From $\set{x, y} = \phi\tup{e} = \set{a, b}$, so that
% $x \in \set{x, y} = \set{a, b}$ and
% $y \in \set{x, y} = \set{a, b}$.
% \par From $u \simeq_{G - e} x$, we conclude that
% $u \in \conncomp_{G - e} x \subseteq
% \tup{\conncomp_{G - e} a} \cup \tup{\conncomp_{G - e} b}$
% (since $x \in \set{a, b}$).
% From $v \simeq_{G - e} y$, we conclude that
% $v \in \conncomp_{G - e} y \subseteq
% \tup{\conncomp_{G - e} a} \cup \tup{\conncomp_{G - e} b}$
% (since $y \in \set{a, b}$).
% Hence, both $u$ and $v$ belong to the set
% $\tup{\conncomp_{G - e} a} \cup \tup{\conncomp_{G - e} b}$.
% This proves \eqref{pf.lem.hw3.conn.oneless.c1.1}.}.
\par
Now, recall that each connected component of $G$ is a union
of a nonzero number (possibly just one, but possibly more) of
connected components of $G - e$.
In other words, the connected components of $G$ are obtained
by merging \textbf{some} of the connected components of
$G - e$.
Which connected components get merged?
On the one hand, we know that the two connected components
$\conncomp_{G - e} a$ and $\conncomp_{G - e} b$ of $G - e$
get merged in $G$ (since $a \simeq_G b$); and these two
components were indeed distinct in $G - e$ (since
$\conncomp_{G - e} a \neq \conncomp_{G - e} b$).
On the other hand, we know that these are the \textbf{only}
two connected components that get
merged\footnote{\textit{Proof.} Let $P$ and $Q$ be two
distinct connected components of $G - e$ that get merged in
$G$ (possibly together with other connected components).
We must show that $P$ and $Q$ are the two connected components
$\conncomp_{G - e} a$ and $\conncomp_{G - e} b$ (in some
order).
\par We know that $P$ and $Q$ are two connected components
of $G - e$.
Hence, $P = \conncomp_{G - e} u$ and
$Q = \conncomp_{G - e} v$ for some $u \in V$ and $v \in V$.
Consider these $u$ and $v$.
Clearly, $u \in \conncomp_{G - e} u = P$ and
$v \in \conncomp_{G - e} v = Q$. \par
Since $P$ and $Q$ are distinct, we have $P \neq Q$, so that
$\conncomp_{G - e} u = P \neq Q = \conncomp_{G - e} v$.
In other words, we do not have $u \simeq_{G - e} v$.
But the connected components $P$ and $Q$ get merged in $G$
(possibly together with other connected components). The
resulting connected component of $G$ contains both $P$ and
$Q$ as subsets, and therefore contains both $u$ and $v$ as
elements (because $u \in P$ and $v \in Q$).
Hence, $u$ and $v$ lie in the same connected component of $G$
(namely, in the connected component we have just mentioned).
In other words, $u \simeq_G v$.
Hence, Lemma~\ref{lem.hw3.conn.uG-ev} shows that
there exist $x \in V$ and $y \in V$ such that
$\phi\tup{e} = \set{x, y}$ and $u \simeq_{G - e} x$ and
$v \simeq_{G - e} y$.
Consider these $x$ and $y$.
We have
$P = \conncomp_{G - e} u = \conncomp_{G - e} x$ (since
$u \simeq_{G - e} x$) and
$Q = \conncomp_{G - e} v = \conncomp_{G - e} y$ (since
$v \simeq_{G - e} y$).
Hence,
$\conncomp_{G - e} x = P \neq Q = \conncomp_{G - e} y$.
Therefore, $x \neq y$.
But $\set{x, y} = \phi\tup{e} = \set{a, b}$.
Hence, $x \in \set{x, y} = \set{a, b}$ and
$y \in \set{x, y} = \set{a, b}$.
Thus, $x$ and $y$ are two elements of $\set{a, b}$.
Since $x \neq y$, we can hence conclude that $x$ and $y$
are two \textbf{distinct} elements of $\set{a, b}$.
Thus, we have either $\tup{x = a \text{ and } y = b}$
or $\tup{x = b \text{ and } y = a}$.
But each of these two options quickly leads us to our
desired conclusion (namely, to the conclusion that
$P$ and $Q$ are the two connected components
$\conncomp_{G - e} a$ and $\conncomp_{G - e} b$ (in
some order)):
\begin{itemize}
\item If $\tup{x = a \text{ and } y = b}$, then we have
$P = \conncomp_{G - e} x = \conncomp_{G - e} a$
(since $x = a$) and
$Q = \conncomp_{G - e} y = \conncomp_{G - e} b$
(since $y = b$), and therefore we conclude that
$P$ and $Q$ are the two connected components
$\conncomp_{G - e} a$ and $\conncomp_{G - e} b$ (in
some order).
\item If $\tup{x = b \text{ and } y = a}$, then we have
$P = \conncomp_{G - e} x = \conncomp_{G - e} b$
(since $x = b$) and
$Q = \conncomp_{G - e} y = \conncomp_{G - e} a$
(since $y = a$), and therefore we conclude that
$P$ and $Q$ are the two connected components
$\conncomp_{G - e} a$ and $\conncomp_{G - e} b$ (in
some order).
\end{itemize}
Thus, we have shown that $P$ and $Q$ are the two
connected components
$\conncomp_{G - e} a$ and $\conncomp_{G - e} b$ (in
some order).
% Hence, \eqref{pf.lem.hw3.conn.oneless.c1.1} shows that
% $u$ and $v$ both belong to the set
% $\tup{\conncomp_{G - e} a} \cup \tup{\conncomp_{G - e} b}$.
% \par
% Now, it is easy to see that $\conncomp_{G - e} a$ is one of
% the two sets $P$ and $Q$.
% [\textit{Proof:} We know that $u$ belongs to the set
% $\tup{\conncomp_{G - e} a} \cup \tup{\conncomp_{G - e} b}$.
% In other words, we have either
% $u \in \conncomp_{G - e} a$ or $u \in \conncomp_{G - e} b$
% (or both). We WLOG assume that $u \in \conncomp_{G - e} a$
% (since the case when $u \in \conncomp_{G - e} b$ is
% analogous). Thus, $u \simeq_{G - e} a$, so that
% $\conncomp_{G - e} u = \conncomp_{G - e} a$. Hence,
% $\conncomp_{G - e} a = \conncomp_{G - e} u = P$. Hence,
% $\conncomp_{G - e} a$ is one of the two sets $P$ and $Q$
% (namely, the set $P$). This completes the proof.]
% A similar argument shows that $\conncomp_{G - e} b$ is one
% of the two sets $P$ and $Q$.
% Hence, each of the two sets $\conncomp_{G - e} a$ and
% $\conncomp_{G - e} b$ is one of the two sets $P$ and $Q$.
% Since these sets $\conncomp_{G - e} a$ and
% $\conncomp_{G - e} b$ are distinct (because
% $\conncomp_{G - e} a \neq \conncomp_{G - e} b$), this shows
% that $\conncomp_{G - e} a$ is one of the two sets $P$ and
% $Q$ and $\conncomp_{G - e} b$ is the other.
% In other words,
% the two sets $\conncomp_{G - e} a$ and $\conncomp_{G - e} b$
% are the two sets $P$ and $Q$ (in some order). In other words,
% the two sets $P$ and $Q$ are the two sets
% $\conncomp_{G - e} a$ and $\conncomp_{G - e} b$ (in some
% order).
This is what we wanted to prove.}.
Altogether, we thus see that only two connected components
are merged when passing from $G - e$ to $G$ (namely,
the two connected components
$\conncomp_{G - e} a$ and $\conncomp_{G - e} b$).
Hence, the number of connected components of $G$ equals the
number of connected components of $G - e$ minus $1$.
In other words,
$\conn G = \conn \tup{G - e} - 1$.