-
Notifications
You must be signed in to change notification settings - Fork 2
/
hw2.tex
executable file
·353 lines (318 loc) · 14.1 KB
/
hw2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
\documentclass[numbers=enddot,12pt,final,onecolumn,notitlepage]{scrartcl}%
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[all,cmtip]{xy}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{framed}
\usepackage{comment}
\usepackage{color}
\usepackage{hyperref}
\usepackage{ifthen}
\usepackage[sc]{mathpazo}
\usepackage[T1]{fontenc}
\usepackage{needspace}
\usepackage{tabls}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2960}
%TCIDATA{LastRevised=Friday, September 16, 2016 20:39:00}
%TCIDATA{SuppressPackageManagement}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%TCIDATA{Language=American English}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\newcounter{exer}
\theoremstyle{definition}
\newtheorem{theo}{Theorem}[section]
\newenvironment{theorem}[1][]
{\begin{theo}[#1]\begin{leftbar}}
{\end{leftbar}\end{theo}}
\newtheorem{lem}[theo]{Lemma}
\newenvironment{lemma}[1][]
{\begin{lem}[#1]\begin{leftbar}}
{\end{leftbar}\end{lem}}
\newtheorem{prop}[theo]{Proposition}
\newenvironment{proposition}[1][]
{\begin{prop}[#1]\begin{leftbar}}
{\end{leftbar}\end{prop}}
\newtheorem{defi}[theo]{Definition}
\newenvironment{definition}[1][]
{\begin{defi}[#1]\begin{leftbar}}
{\end{leftbar}\end{defi}}
\newtheorem{remk}[theo]{Remark}
\newenvironment{remark}[1][]
{\begin{remk}[#1]\begin{leftbar}}
{\end{leftbar}\end{remk}}
\newtheorem{coro}[theo]{Corollary}
\newenvironment{corollary}[1][]
{\begin{coro}[#1]\begin{leftbar}}
{\end{leftbar}\end{coro}}
\newtheorem{conv}[theo]{Convention}
\newenvironment{condition}[1][]
{\begin{conv}[#1]\begin{leftbar}}
{\end{leftbar}\end{conv}}
\newtheorem{quest}[theo]{Question}
\newenvironment{algorithm}[1][]
{\begin{quest}[#1]\begin{leftbar}}
{\end{leftbar}\end{quest}}
\newtheorem{warn}[theo]{Warning}
\newenvironment{conclusion}[1][]
{\begin{warn}[#1]\begin{leftbar}}
{\end{leftbar}\end{warn}}
\newtheorem{conj}[theo]{Conjecture}
\newenvironment{conjecture}[1][]
{\begin{conj}[#1]\begin{leftbar}}
{\end{leftbar}\end{conj}}
\newtheorem{exam}[theo]{Example}
\newenvironment{example}[1][]
{\begin{exam}[#1]\begin{leftbar}}
{\end{leftbar}\end{exam}}
\newtheorem{exmp}[exer]{Exercise}
\newenvironment{exercise}[1][]
{\begin{exmp}[#1]\begin{leftbar}}
{\end{leftbar}\end{exmp}}
\newenvironment{statement}{\begin{quote}}{\end{quote}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\let\cupnonlimits\bigcup
\let\capnonlimits\bigcap
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\renewcommand{\bigcup}{\cupnonlimits\limits}
\renewcommand{\bigcap}{\capnonlimits\limits}
\setlength\tablinesep{3pt}
\setlength\arraylinesep{3pt}
\setlength\extrarulesep{3pt}
\voffset=0cm
\hoffset=-0.7cm
\setlength\textheight{22.5cm}
\setlength\textwidth{15.5cm}
\newenvironment{verlong}{}{}
\newenvironment{vershort}{}{}
\newenvironment{noncompile}{}{}
\excludecomment{verlong}
\includecomment{vershort}
\excludecomment{noncompile}
\newcommand{\id}{\operatorname{id}}
\newcommand{\rev}{\operatorname{rev}}
\newcommand{\conncomp}{\operatorname{conncomp}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\powset}[2][]{\ifthenelse{\equal{#2}{}}{\mathcal{P}\left(#1\right)}{\mathcal{P}_{#1}\left(#2\right)}}
% $\powset[k]{S}$ stands for the set of all $k$-element subsets of
% $S$. The argument $k$ is optional, and if not provided, the result
% is the whole powerset of $S$.
\newcommand{\set}[1]{\left\{ #1 \right\}}
% $\set{...}$ yields $\left\{ ... \right\}$.
\newcommand{\abs}[1]{\left| #1 \right|}
% $\abs{...}$ yields $\left| ... \right|$.
\newcommand{\tup}[1]{\left( #1 \right)}
% $\tup{...}$ yields $\left( ... \right)$.
\newcommand{\ive}[1]{\left[ #1 \right]}
% $\ive{...}$ yields $\left[ ... \right]$.
\newcommand{\verts}[1]{\operatorname{V}\left( #1 \right)}
% $\verts{...}$ yields $\operatorname{V}\left( ... \right)$.
\newcommand{\edges}[1]{\operatorname{E}\left( #1 \right)}
% $\edges{...}$ yields $\operatorname{E}\left( ... \right)$.
\newcommand{\arcs}[1]{\operatorname{A}\left( #1 \right)}
% $\arcs{...}$ yields $\operatorname{A}\left( ... \right)$.
\newcommand{\underbrack}[2]{\underbrace{#1}_{\substack{#2}}}
% $\underbrack{...1}{...2}$ yields
% $\underbrace{...1}_{\substack{...2}}$. This is useful for doing
% local rewriting transformations on mathematical expressions with
% justifications.
\ihead{Math 5707 Spring 2017 (Darij Grinberg): homework set 2}
\ohead{page \thepage}
\cfoot{}
\begin{document}
\begin{center}
\textbf{Math 5707 Spring 2017 (Darij Grinberg): homework set 2}
%\textbf{due: Wed, 15 Feb 2017, in class} or by email
%(\texttt{[email protected]}) before class
\textbf{Please hand in solutions to FIVE of the seven problems.}
%{\color{red}
%(If you hand in more, the grader will choose five to grade.)}
\end{center}
See the \href{http://www.cip.ifi.lmu.de/~grinberg/t/17s/nogra.pdf}{lecture notes} for relevant material.
If you reference results from the lecture notes, please \textbf{mention the date and time} of the version of the notes you are using (as the numbering changes during updates).
\begin{exercise}
Let $G$ and $H$ be two simple graphs. The \textit{Cartesian product} of $G$
and $H$ is a new simple graph, denoted $G \times H$, which is defined as
follows:
\begin{itemize}
\item The vertex set $\verts{G \times H}$ of $G \times H$ is the
Cartesian product $\verts{G} \times \verts{H}$.
\item A vertex $\tup{g, h}$ of $G \times H$ is adjacent to a vertex
$\tup{g', h'}$ of $G \times H$ if and only if we have
\begin{itemize}
\item \textbf{either} $g = g'$ and $hh' \in \edges{H}$,
\item \textbf{or} $h = h'$ and $gg' \in \edges{G}$.
\end{itemize}
(In particular, exactly one of the two equalities $g = g'$ and $h = h'$
has to hold when $\tup{g, h}$ is adjacent to $\tup{g', h'}$.)
\end{itemize}
\textbf{(a)} Recall the $n$-dimensional cube graph $Q_n$ defined for
each $n \in \NN$. (Its vertices are $n$-tuples $\tup{a_1, a_2, \ldots,
a_n} \in \set{0, 1}^n$, and two such vertices are adjacent if and only
if they differ in exactly one entry.) Prove that $Q_n \cong
Q_{n-1} \times Q_1$ for each positive integer $n$. (Thus, $Q_n$ can
be obtained from $Q_1$ by repeatedly forming Cartesian products; i.e.,
it is a ``Cartesian power'' of $Q_1$.)
\textbf{(b)} Assume that each of the graphs $G$ and $H$ has a
Hamiltonian path. Prove that $G \times H$ has a Hamiltonian path.
\textbf{(c)} Assume that both numbers $\abs{\verts{G}}$ and
$\abs{\verts{H}}$ are $> 1$, and that at least one of them is even.
Assume again that each of the graphs $G$ and $H$ has a Hamiltonian
path. Prove that $G \times H$ has a Hamiltonian cycle.
\end{exercise}
\begin{exercise} \label{exe.eulertrails.Kn}
Let $n$ be a positive integer. Recall that $K_n$ denotes the complete
graph on $n$ vertices. This is the graph with vertex set $V =
\set{1, 2, \ldots, n}$ and edge set $\mathcal{P}_2\tup{V}$ (so each two
distinct vertices are connected).
Find Eulerian circuits for the graphs $K_3$, $K_5$, and $K_7$.
\end{exercise}
\begin{exercise} \label{exe.debruijn.1}
Let $n$ be a positive integer, and $K$ be a nonempty finite set.
Let $k = \abs{K}$.
A \textit{de Bruijn sequence} of order $n$ on $K$ means a list
$\tup{c_0, c_1, \ldots, c_{k^n-1}}$ of $k^n$ elements of $K$
such that
\begin{enumerate}
\item[(1)] for each
$n$-tuple $\tup{a_1, a_2, \ldots, a_n} \in K^n$ of elements of $K$,
there exists a \textbf{unique} $r \in \set{0, 1, \ldots, k^n-1}$ such
that
$\tup{a_1, a_2, \ldots, a_n} = \tup{c_r, c_{r+1}, \ldots, c_{r+n-1}}$.
\end{enumerate}
Here, the indices are understood to be cyclic modulo $k^n$; that is,
$c_q$ (for $q \geq k^n$) is defined to be $c_{q \% k^n}$, where
$q \% k^n$ denotes the remainder of $q$ modulo $k^n$.
(Note that the condition (1) can be restated as follows: If we
write the elements $c_0, c_1, \ldots, c_{k^n-1}$ on a circular
necklace (in this order), so that the last element $c_{k^n-1}$ is
followed by the first one, then each $n$-tuple of elements of $K$
appears as a string of $n$ consecutive elements on the necklace, and
the position at which it appears on the necklace is unique.)
For example, $\tup{c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8}
= \tup{1, 1, 2, 2, 3, 3, 1, 3, 2}$ is a de Bruijn sequence
of order $2$ on the set $\set{1, 2, 3}$, because for each $2$-tuple
$\tup{a_1, a_2} \in \set{1, 2, 3}^2$, there exists a unique $r \in \set{0, 1,
\ldots, 8}$ such that $\tup{a_1, a_2} = \tup{c_r, c_{r+1}}$. Namely:
\begin{align*}
\tup{1, 1} = \tup{c_0, c_1}; \qquad
\tup{1, 2} = \tup{c_1, c_2}; \qquad
\tup{1, 3} = \tup{c_6, c_7}; \\
\tup{2, 1} = \tup{c_8, c_9}; \qquad
\tup{2, 2} = \tup{c_2, c_3}; \qquad
\tup{2, 3} = \tup{c_3, c_4}; \\
\tup{3, 1} = \tup{c_5, c_6}; \qquad
\tup{3, 2} = \tup{c_7, c_8}; \qquad
\tup{3, 3} = \tup{c_4, c_5}.
\end{align*}
Prove that there exists a de Bruijn sequence of order $n$ on $K$
(no matter what $n$ and $K$ are).
\textbf{Hint:} Let $D$ be the digraph with vertex set $K^{n-1}$ and
an arc from $\tup{a_1, a_2, \ldots, a_{n-1}}$ to
$\tup{a_2, a_3, \ldots, a_n}$ for each
$\tup{a_1, a_2, \ldots, a_n} \in K^n$ (and no other arcs). Prove that
$D$ has an Eulerian circuit.
\end{exercise}
\begin{verlong}
\begin{exercise}
Let $d$ and $m$ be two positive integers such that $d \mid m$ and
$d > 1$. Prove
that there exists a permutation
$\tup{x_1, x_2, \ldots, x_m}$ of the list $\tup{0, 1, \ldots, m-1}$
with the following property:
For each $i \in \set{1, 2, \ldots, m}$, we have
$x_{i+1} \equiv d x_i + r_i \mod m$ for some
$r_i \in \set{0, 1, \ldots, d-1}$. (Here, $x_{m+1}$ should be
understood as $x_1$.)
\textbf{Hint:} If $m = d^n$ is a power of $d$, then we can identify
the integers $0, 1, \ldots, m-1$ with $n$-tuples of elements of
$\set{0, 1, \ldots, d-1}$ (by representing them in base $d$, including
just enough leading zeroes to ensure that they all have $n$ digits).
Thus, the exercise reduces to Exercise~\ref{exe.debruijn.1} in this
case. Try to extend the solution of the latter to the general case.
\end{exercise}
\end{verlong}
Recall that the \textit{indegree} of a vertex $v$ of a digraph
$D = \tup{V, A}$ is defined to be the number of all arcs $a \in A$
whose target is $v$. This indegree is denoted by
$\deg^-\tup{v}$ or by $\deg^-_D\tup{v}$ (whenever the graph $D$ is not
clear from the context).
Likewise, the \textit{outdegree} of a vertex $v$ of a digraph
$D = \tup{V, A}$ is defined to be the number of all arcs $a \in A$
whose source is $v$. This outdegree is denoted by
$\deg^+\tup{v}$ or by $\deg^+_D\tup{v}$ (whenever the graph $D$ is not
clear from the context).
\begin{exercise}
Let $D$ be a digraph. Show that
$\sum_{v \in \verts{D}} \deg^-\tup{v}
= \sum_{v \in \verts{D}} \deg^+\tup{v}$.
\end{exercise}
The next few exercises are about \textit{tournaments}. A
\textit{tournament} is a loopless\footnote{A digraph $\tup{V, A}$ is
said to be \textit{loopless} if it has no loops. (A \textit{loop}
means an arc of the form $\tup{v, v}$ for some $v \in V$.)} digraph
$D = \tup{V, A}$ with the following
property: For any two distinct vertices $u \in V$ and $v \in V$,
\textbf{precisely} one of the two pairs $\tup{u, v}$ and $\tup{v, u}$
belongs to $A$. (In other words, any two distinct vertices are
connected by an arc in one direction, but not in both.)
A \textit{$3$-cycle} in a tournament $D = \tup{V, A}$ means a
triple $\tup{u, v, w}$ of vertices in $V$ such that all three pairs
$\tup{u, v}$, $\tup{v, w}$ and $\tup{w, u}$ belong to $A$.
\begin{exercise}
Let $D = \tup{V, A}$ be a tournament.
Set $n = \abs{V}$ and $m = \sum_{v \in V} \dbinom{\deg^-\tup{v}}{2}$.
\textbf{(a)} Show that $m = \sum_{v \in V} \dbinom{\deg^+\tup{v}}{2}$.
\textbf{(b)} Show that the number of $3$-cycles in $D$ is
$3\tup{\dbinom{n}{3} - m}$.
\end{exercise}
\begin{exercise}
If a tournament $D$ has a $3$-cycle $\tup{u, v, w}$, then
we can define a new tournament $D'_{u, v, w}$ as follows: The vertices
of $D'_{u, v, w}$ shall be the same as those of $D$. The arcs of
$D'_{u, v, w}$ shall be the same as those of $D$, except that the
three arcs $\tup{u, v}$, $\tup{v, w}$ and $\tup{w, u}$ are replaced
by the three new arcs $\tup{v, u}$, $\tup{w, v}$ and $\tup{u, w}$.
(Visually speaking, $D'_{u, v, w}$ is obtained from $D$ by turning the
arrows on the arcs $\tup{u, v}$, $\tup{v, w}$ and $\tup{w, u}$
around.) We say that the new tournament $D'_{u, v, w}$ is obtained
from the old tournament $D$ by a \textit{$3$-cycle reversal operation}.
Now, let $V$ be a finite set, and let $E$ and $F$ be two tournaments
with vertex set $V$. Prove that $F$ can be obtained from $E$ by a
sequence of $3$-cycle reversal operations if and only if each
$v \in V$ satisfies $\deg^-_E \tup{v} = \deg^-_F \tup{v}$.
% (Here, $\deg^-_D \tup{v}$
% denotes the indegree of $v$ with respect to a given digraph $D$.
(Note that a sequence may be empty, which allows handling the case
$E = F$ even if $E$ has no $3$-cycles to reverse.)
\end{exercise}
A tournament $D = \tup{V, A}$ is called \textit{transitive} if it
has no $3$-cycles.
\begin{exercise}
If a tournament $D = \tup{V, A}$ has three distinct vertices
$u$, $v$ and $w$ satisfying $\tup{u, v} \in A$ and $\tup{v, w} \in A$,
then we can define a new tournament $D''_{u, v, w}$ as follows:
The vertices of $D''_{u, v, w}$ shall be the same as those of $D$. The
arcs of $D''_{u, v, w}$ shall be the same as those of $D$, except that
the two arcs $\tup{u, v}$ and $\tup{v, w}$ are replaced
by the two new arcs $\tup{v, u}$ and $\tup{w, v}$.
We say that the new tournament $D''_{u, v, w}$ is obtained
from the old tournament $D$ by a \textit{$2$-path reversal operation}.
Let $D$ be any tournament. Prove that there is a sequence of
$2$-path reversal operations that transforms $D$ into a transitive
tournament.
\end{exercise}
\end{document}