-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw2s.tex
executable file
·707 lines (594 loc) · 28.9 KB
/
hw2s.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
% The LaTeX below is mostly computer-generated (for reasons of speed); don't expect it to be very readable. Sorry.
\documentclass[paper=a4, fontsize=12pt]{scrartcl}%
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\usepackage{amsmath,amsfonts,amsthm,amssymb}
\usepackage{mathrsfs}
\usepackage{sectsty}
\usepackage{hyperref}
\usepackage{graphicx}
\usepackage{framed}
\usepackage{ifthen}
\usepackage{lastpage}
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[height=10in,a4paper,hmargin={1in,0.8in}]{geometry}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usepackage{verbatim}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}%
\setcounter{MaxMatrixCols}{30}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2960}
%TCIDATA{LastRevised=Tuesday, February 19, 2019 22:31:04}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\allsectionsfont{\centering \normalfont\scshape}
\setlength\parindent{20pt}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\Z}[1]{\mathbb{Z}/#1\mathbb{Z}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\set}[1]{\left\{ #1 \right\}}
\newcommand{\abs}[1]{\left| #1 \right|}
\newcommand{\tup}[1]{\left( #1 \right)}
\newcommand{\ive}[1]{\left[ #1 \right]}
\newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor}
\newcommand{\underbrack}[2]{\underbrace{#1}_{\substack{#2}}}
\newcommand{\powset}[2][]{\ifthenelse{\equal{#2}{}}{\mathcal{P}\left(#1\right)}{\mathcal{P}_{#1}\left(#2\right)}}
\newcommand{\horrule}[1]{\rule{\linewidth}{#1}}
\newcommand{\nnn}{\nonumber\\}
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\let\cupnonlimits\bigcup
\let\capnonlimits\bigcap
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\renewcommand{\bigcup}{\cupnonlimits\limits}
\renewcommand{\bigcap}{\capnonlimits\limits}
\newtheoremstyle{plainsl}
{8pt plus 2pt minus 4pt}
{8pt plus 2pt minus 4pt}
{\slshape}
{0pt}
{\bfseries}
{.}
{5pt plus 1pt minus 1pt}
{}
\theoremstyle{plainsl}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{conjecture}[theorem]{Conjecture}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{examples}[theorem]{Examples}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{question}[theorem]{Question}
\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newenvironment{statement}{\begin{quote}}{\end{quote}}
\newenvironment{fineprint}{\begin{small}}{\end{small}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\newenvironment{question}[1][Question]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
\newcommand{\myname}{Darij Grinberg}
\newcommand{\myid}{00000000}
\newcommand{\mymail}{[email protected]}
\newcommand{\psetnumber}{2}
\ihead{Solutions to homework set \#\psetnumber}
\ohead{page \thepage\ of \pageref{LastPage}}
\ifoot{\myname, \myid}
\ofoot{\mymail}
\begin{document}
\title{ \normalfont {\normalsize \textsc{University of Minnesota, School of
Mathematics} }\\[25pt] \rule{\linewidth}{0.5pt} \\[0.4cm] {\huge Math 4281: Introduction to Modern Algebra, }\\Spring 2019: Homework 2\\\rule{\linewidth}{2pt} \\[0.5cm] }
\author{Darij Grinberg}
\maketitle
%----------------------------------------------------------------------------------------
% EXERCISE 1
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 1: gcd basics}
\subsection{Problem}
Prove the following:
\begin{enumerate}
\item[\textbf{(a)}] If $a_{1}, a_{2}, b_{1}, b_{2}$ are integers satisfying
$a_{1} \mid b_{1}$ and $a_{2} \mid b_{2}$, then $\gcd\left( a_{1}, a_{2}
\right) \mid\gcd\left( b_{1}, b_{2} \right) $.
\item[\textbf{(b)}] If $a, b, c, s$ are integers, then $\gcd\left( sa, sb, sc
\right) = \left| s \right| \gcd\left( a, b, c \right) $.
\end{enumerate}
\subsection{Solution}
\textbf{(a)} See
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class notes},
where this is Exercise 2.9.4. (The numbering may shift; it is one of the
exercises in the \textquotedblleft Common divisors, the Euclidean algorithm
and the Bezout theorem\textquotedblright\ section.)
\textbf{(b)} See
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class notes},
where this is Exercise 2.9.6. (The numbering may shift; it is one of the
exercises in the \textquotedblleft Common divisors, the Euclidean algorithm
and the Bezout theorem\textquotedblright\ section.)
%----------------------------------------------------------------------------------------
% EXERCISE 2
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 2: Products of gcds}
\subsection{Problem}
Prove the following:
Any four integers $u,v,x,y$ satisfy $\gcd\left( u,v\right) \gcd\left(
x,y\right) =\gcd\left( ux,uy,vx,vy\right) $.
\subsection{Solution}
See \href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class
notes}, where this is Exercise 2.10.10. (The numbering may shift; it is one of
the exercises in the \textquotedblleft Coprime integers\textquotedblright\ section.)
%----------------------------------------------------------------------------------------
% EXERCISE 3
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 3: The gcd-lcm connection for three numbers}
\subsection{Problem}
Let $a, b, c$ be three integers. Prove that $\operatorname{lcm}\left( a, b, c
\right) \gcd\left( bc, ca, ab \right) = \left| abc \right| $.
\subsection{Solution}
See \href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class
notes}, where this is Exercise 2.11.2 \textbf{(b)}. (The numbering may shift;
it is one of the exercises in the \textquotedblleft Lowest common
multiples\textquotedblright\ section.)
%----------------------------------------------------------------------------------------
% EXERCISE 4
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 4: Divisibility tests for $3, 9, 11, 7$}
\subsection{Problem}
Let $n$ be a positive integer. Let ``$d_{k} d_{k-1} \cdots d_{0}$'' be the
decimal representation of $n$; this means that $d_{0}, d_{1}, \ldots, d_{k}$
are digits (i.e., elements of $\left\{ 0, 1, \ldots, 9 \right\} $) such that
$n = d_{k} 10^{k} + d_{k-1} 10^{k-1} + \cdots+ d_{0} 10^{0}$. The digits
$d_{0}, d_{1}, \ldots, d_{k}$ are called the \textit{digits of $n$}.
(Incidentally, the quickest way to find these digits is by repeated division
with remainder: To obtain the decimal representation of $n \geq10$, you take
the decimal representation of $n // 10$ and append the digit $n \% 10$ at the
end. Thus,
\[
d_{0} = n \% 10, \qquad d_{1} = \left( n // 10 \right) \% 10, \qquad d_{2} =
\left( \left( n // 10 \right) // 10 \right) \% 10, \qquad\text{etc.}
\]
But in this exercise, you can just assume that the decimal representation exists.)
\begin{enumerate}
\item[\textbf{(a)}] Prove that $3 \mid n$ if and only if $3 \mid d_{k} +
d_{k-1} + \cdots+ d_{0}$. (In other words, a positive integer $n$ is divisible
by $3$ if and only if the sum of its digits is divisible by $3$.)
\item[\textbf{(b)}] Prove that $9 \mid n$ if and only if $9 \mid d_{k} +
d_{k-1} + \cdots+ d_{0}$. (In other words, a positive integer $n$ is divisible
by $9$ if and only if the sum of its digits is divisible by $9$.)
\item[\textbf{(c)}] Prove that $11 \mid n$ if and only if $11 \mid\left( -1
\right) ^{k} d_{k} + \left( -1 \right) ^{k-1} d_{k-1} + \cdots+ \left( -1
\right) ^{0} d_{0}$. (In other words, a positive integer $n$ is divisible by
$11$ if and only if the sum of its digits in the even positions minus the sum
of its digits in the odd positions is divisible by $11$.)
\item[\textbf{(d)}] Let $q = d_{k} 10^{k-1} + d_{k-1} 10^{k-2} + \cdots+ d_{1}
10^{0}$. (Equivalently, $q = n // 10 = \dfrac{n-d_{0}}{10}$; this is the
number obtained from $n$ by dropping the least significant digit.) Prove that
$7 \mid n$ if and only if $7 \mid q - 2 d_{0}$.
(This gives a recursive test for divisibility by $7$.)
\end{enumerate}
%Note to self: sol1.tex, problems 9-11.
\subsection{Solution sketch}
We will use the following quasi-trivial lemma:
\begin{lemma}
\label{lem.ent.mod.ndivx=ndivy}Let $n,x,y$ be three integers such that
$x\equiv y\operatorname{mod}n$. Then, we have $n\mid x$ if and only if $n\mid
y$.
\end{lemma}
\begin{proof}
[Proof of Lemma \ref{lem.ent.mod.ndivx=ndivy}.]$\Longrightarrow:$ Assume that
$n\mid x$. We must prove that $n\mid y$.
We have $n\mid x$, thus $x\equiv0\operatorname{mod}n$. But $x\equiv
y\operatorname{mod}n$ and thus $y\equiv x\equiv0\operatorname{mod}n$. Hence,
$n\mid y$. This proves the \textquotedblleft$\Longrightarrow$%
\textquotedblright\ direction of Lemma \ref{lem.ent.mod.ndivx=ndivy}.
$\Longleftarrow:$ Assume that $n\mid y$. We must prove that $n\mid x$.
We have $n\mid y$, thus $y\equiv0\operatorname{mod}n$. But $x\equiv
y\equiv0\operatorname{mod}n$. Hence, $n\mid x$. This proves the
\textquotedblleft$\Longleftarrow$\textquotedblright\ direction of Lemma
\ref{lem.ent.mod.ndivx=ndivy}.
\end{proof}
\textbf{(a)} We have $10\equiv1\operatorname{mod}3$. Thus, each $m\in
\mathbb{N}$ satisfies
\begin{equation}
10^{m}\equiv1^{m}=1\operatorname{mod}3. \label{sol.ent.base10.div39117.a.1}%
\end{equation}
Now,%
\begin{align*}
n & =d_{k}\underbrace{10^{k}}_{\substack{\equiv1\operatorname{mod}%
3\\\text{(by \eqref{sol.ent.base10.div39117.a.1})}}}+d_{k-1}%
\underbrace{10^{k-1}}_{\substack{\equiv1\operatorname{mod}3\\\text{(by
\eqref{sol.ent.base10.div39117.a.1})}}}+\cdots+d_{0}\underbrace{10^{0}%
}_{\substack{\equiv1\operatorname{mod}3\\\text{(by
\eqref{sol.ent.base10.div39117.a.1})}}}\\
& \equiv d_{k}+d_{k-1}+\cdots+d_{0}\operatorname{mod}3.
\end{align*}
Thus, $3\mid n$ if and only if $3\mid d_{k}+d_{k-1}+\cdots+d_{0}$ (by Lemma
\ref{lem.ent.mod.ndivx=ndivy}, applied to $3$, $n$ and $d_{k}+d_{k-1}%
+\cdots+d_{0}$ instead of $n$, $x$ and $y$).
This solves part \textbf{(a)}. \\[0.4cm]
\textbf{(b)} The solution to part \textbf{(b)} is precisely the same as that
for part \textbf{(a)}, except that the $3$'s need to be replaced by $9$'s.
\\[0.4cm]
\textbf{(c)} We have $10\equiv-1\operatorname{mod}11$. Hence, each
$m\in\mathbb{N}$ satisfies
\begin{equation}
10^{m}\equiv\left( -1\right) ^{m}\operatorname{mod}11.
\label{sol.ent.base10.div39117.c.1}%
\end{equation}
Now,%
\begin{align*}
n & =d_{k}\underbrace{10^{k}}_{\substack{\equiv\left( -1\right)
^{k}\operatorname{mod}11\\\text{(by \eqref{sol.ent.base10.div39117.c.1})}%
}}+d_{k-1}\underbrace{10^{k-1}}_{\substack{\equiv\left( -1\right)
^{k-1}\operatorname{mod}11\\\text{(by \eqref{sol.ent.base10.div39117.c.1})}%
}}+\cdots+d_{0}\underbrace{10^{0}}_{\substack{\equiv\left( -1\right)
^{0}\operatorname{mod}11\\\text{(by \eqref{sol.ent.base10.div39117.c.1})}}}\\
& \equiv d_{k}\left( -1\right) ^{k}+d_{k-1}\left( -1\right) ^{k-1}%
+\cdots+d_{0}\left( -1\right) ^{0}\\
& =\left( -1\right) ^{k}d_{k}+\left( -1\right) ^{k-1}d_{k-1}%
+\cdots+\left( -1\right) ^{0}d_{0}\operatorname{mod}11.
\end{align*}
Thus, $11\mid n$ if and only if $11\mid\left( -1\right) ^{k}d_{k}+\left(
-1\right) ^{k-1}d_{k-1}+\cdots+\left( -1\right) ^{0}d_{0}$ (by Lemma
\ref{lem.ent.mod.ndivx=ndivy}, applied to $11$, $n$ and $\left( -1\right)
^{k}d_{k}+\left( -1\right) ^{k-1}d_{k-1}+\cdots+\left( -1\right) ^{0}%
d_{0}$ instead of $n$, $x$ and $y$). This solves part \textbf{(c)}. \\[0.4cm]
\textbf{(d)} We have%
\begin{align*}
n & =d_{k}10^{k}+d_{k-1}10^{k-1}+\cdots+d_{0}10^{0}\\
& =\underbrace{\left( d_{k}10^{k}+d_{k-1}10^{k-1}+\cdots+d_{1}10^{1}\right)
}_{=10\cdot\left( d_{k}10^{k-1}+d_{k-1}10^{k-2}+\cdots+d_{1}10^{0}\right)
}+d_{0}\underbrace{10^{0}}_{=1}\\
& =10\cdot\underbrace{\left( d_{k}10^{k-1}+d_{k-1}10^{k-2}+\cdots
+d_{1}10^{0}\right) }_{=q}+d_{0}=10q+d_{0}.
\end{align*}
Now, we need to prove two claims:
\begin{statement}
\textit{Claim 1:} If $7\mid n$, then $7\mid q-2d_{0}$.
\end{statement}
\begin{statement}
\textit{Claim 2:} If $7\mid q-2d_{0}$, then $7\mid n$.
\end{statement}
\textit{Proof of Claim 1:} Assume that $7\mid n$. Then, $7\mid n=10q+d_{0}%
=d_{0}-\left( -10q\right) $, so that $d_{0}\equiv-10q\operatorname{mod}7$.
Hence,%
\[
q-2\underbrace{d_{0}}_{\equiv-10q\operatorname{mod}7}\equiv q-2\left(
-10q\right) =\underbrace{21}_{\equiv0\operatorname{mod}7}q\equiv
0\operatorname{mod}7,
\]
so that $7\mid q-2d_{0}$. This proves Claim 1.
\textit{Proof of Claim 2:} Assume that $7\mid q-2d_{0}$. Thus, $q\equiv
2d_{0}\operatorname{mod}7$. Hence,%
\[
n=10\underbrace{q}_{\equiv2d_{0}\operatorname{mod}7}+d_{0}\equiv10\left(
2d_{0}\right) +d_{0}=\underbrace{21}_{\equiv0\operatorname{mod}7}d_{0}%
\equiv0\operatorname{mod}7,
\]
so that $7\mid n$. This proves Claim 2.
Now, part \textbf{(d)} of the problem is solved.
%----------------------------------------------------------------------------------------
% EXERCISE 5
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 5: A divisibility}
\subsection{Problem}
Let $n \in\mathbb{N}$. Prove that $7 \mid3^{2n+1} + 2^{n+2}$.
\subsection{Solution}
See \href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class
notes}, where this is Exercise 2.5.1. (The numbering may shift; it is one of
the exercises in the \textquotedblleft Substitutivity for
congruences\textquotedblright\ section.)
%----------------------------------------------------------------------------------------
% EXERCISE 6
%----------------------------------------------------------------------------------------
\rule{0pt}{0.3pt} \\[0.4cm]
\section{Exercise 6: A binomial coefficient sum}
\subsection{Problem}
Let $n \in\mathbb{N}$. Prove that
\begin{align}
\sum_{k=0}^{n} \dbinom{-2}{k} = \left( -1 \right) ^{n} \left( \left( n+2
\right) // 2 \right) .
\end{align}
\subsection{Solution}
Recall the following fact (which was the claim of Exercise 3 \textbf{(d)} on
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf}{homework set \#0}):
\begin{proposition}
\label{prop.sol.binom.-2choosek-sum.upneg}Any $n\in\mathbb{Q}$ and
$k\in\mathbb{Q}$ satisfy
\[
\dbinom{-n}{k}=\left( -1\right) ^{k}\dbinom{k+n-1}{k}.
\]
\end{proposition}
Let us also recall another fact (the claim of Exercise 3 \textbf{(c)} on
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf}{homework set \#0}):
\begin{proposition}
\label{prop.sol.binom.-2choosek-sum.sym}If $n\in\mathbb{N}$ and $k\in
\mathbb{Q}$, then
\[
\dbinom{n}{k}=\dbinom{n}{n-k}.
\]
\end{proposition}
Next, we show a simple formula for the binomial coefficients in the exercise:
\begin{lemma}
\label{lem.sol.binom.-2choosek-sum.-2choosek}If $k\in\mathbb{N}$, then%
\[
\dbinom{-2}{k}=\left( -1\right) ^{k}\left( k+1\right) .
\]
\end{lemma}
\begin{proof}
[Proof of Lemma \ref{lem.sol.binom.-2choosek-sum.-2choosek}.]Let
$k\in\mathbb{N}$. Then, Proposition \ref{prop.sol.binom.-2choosek-sum.upneg}
(applied to $2$ instead of $n$) yields
\begin{equation}
\dbinom{-2}{k}=\left( -1\right) ^{k}\dbinom{k+2-1}{k}=\left( -1\right)
^{k}\dbinom{k+1}{k} \label{pf.lem.sol.binom.-2choosek-sum.-2choosek.1}%
\end{equation}
(since $k+2-1=k+1$). But $k\in\mathbb{N}$ and thus $k+1\in\mathbb{N}$. Hence,
Proposition \ref{prop.sol.binom.-2choosek-sum.sym} (applied to $k+1$ instead
of $n$) yields%
\begin{align*}
\dbinom{k+1}{k} & =\dbinom{k+1}{\left( k+1\right) -k}=\dbinom{k+1}%
{1}\qquad\left( \text{since }\left( k+1\right) -k=1\right) \\
& =\dfrac{\left( k+1\right) \left( \left( k+1\right) -1\right) \left(
\left( k+1\right) -2\right) \cdots\left( \left( k+1\right) -1+1\right)
}{1!}\\
& \qquad\left( \text{by the definition of }\dbinom{k+1}{1}\right) \\
& =\dfrac{k+1}{1!}\qquad\left(
\begin{array}
[c]{c}%
\text{since the}\\
\text{product }\left( k+1\right) \left( \left( k+1\right) -1\right)
\left( \left( k+1\right) -2\right) \cdots\left( \left( k+1\right)
-1+1\right) \\
\text{has only one factor}%
\end{array}
\right) \\
& =\dfrac{k+1}{1}=k+1.
\end{align*}
Hence, \eqref{pf.lem.sol.binom.-2choosek-sum.-2choosek.1} becomes
\[
\dbinom{-2}{k}=\left( -1\right) ^{k}\underbrace{\dbinom{k+1}{k}}%
_{=k+1}=\left( -1\right) ^{k}\left( k+1\right) .
\]
This proves Lemma \ref{lem.sol.binom.-2choosek-sum.-2choosek}.
\end{proof}
% (Note that Lemma \ref{lem.sol.binom.-2choosek-sum.-2choosek} also
% appears in \cite[Exercise 3.5 \textbf{(b)}]{detnotes}.)
Now, in order to solve the problem at hand, it suffices to prove the identity%
\begin{equation}
\sum_{k=0}^{n}\left( -1\right) ^{k}\left( k+1\right) =\left( -1\right)
^{n}\left( \left( n+2\right) //2\right) .
\label{sol.binom.-2choosek-sum.new-goal}%
\end{equation}
Indeed, once \eqref{sol.binom.-2choosek-sum.new-goal} is proven, it will
follow that%
\[
\sum_{k=0}^{n}\underbrace{\dbinom{-2}{k}}_{\substack{=\left( -1\right)
^{k}\left( k+1\right) \\\text{(by Lemma
\ref{lem.sol.binom.-2choosek-sum.-2choosek})}}}=\sum_{k=0}^{n}\left(
-1\right) ^{k}\left( k+1\right) =\left( -1\right) ^{n}\left( \left(
n+2\right) //2\right)
\]
(by \eqref{sol.binom.-2choosek-sum.new-goal}), and thus the exercise will be solved.
Before we prove \eqref{sol.binom.-2choosek-sum.new-goal}, let us state some
basic facts about even and odd numbers:
\begin{proposition}
\label{prop.sol.binom.-2choosek-sum.evod}Let $u$ be an integer.
\textbf{(a)} The integer $u$ is even if and only if $u\%2=0$.
\textbf{(b)} The integer $u$ is odd if and only if $u\%2=1$.
\textbf{(c)} The integer $u$ is even if and only if $u\equiv0\mod 2$.
\textbf{(d)} The integer $u$ is odd if and only if $u\equiv1\mod 2$.
\textbf{(e)} If $u$ is even, then $\left( -1\right) ^{u}=1$.
\textbf{(f)} If $u$ is odd, then $\left( -1\right) ^{u}=-1$.
\textbf{(g)} We have $u=\left( u//2\right) \cdot2+\left( u\%2\right) $.
\end{proposition}
\begin{proof}
[Proof of Proposition \ref{prop.sol.binom.-2choosek-sum.evod}.]Parts
\textbf{(a)}, \textbf{(b)}, \textbf{(c)} and \textbf{(d)} of Proposition
\ref{prop.sol.binom.-2choosek-sum.evod} are parts of Exercise 3 on
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/hw1s.pdf}{homework set \#1},
and their proofs can be found in
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class notes}.
Thus, we only need to prove parts \textbf{(e)}, \textbf{(f)} and \textbf{(g)} now.
\textbf{(e)} Assume that that $u$ is even. Then, $u\equiv0\operatorname{mod}2$
(by Proposition \ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(c)}). In
other words, $2\mid u$. In other words, $u=2g$ for some $g\in\mathbb{Z}$.
Consider this $g$. From $u=2g$, we obtain $\left( -1\right) ^{u}=\left(
-1\right) ^{2g}=\left( \underbrace{\left( -1\right) ^{2}}_{=1}\right)
^{g}=1^{g}=1$. This proves Proposition \ref{prop.sol.binom.-2choosek-sum.evod}
\textbf{(e)}.
\textbf{(f)} Assume that that $u$ is odd. Then, $u\equiv1\operatorname{mod}2$
(by Proposition \ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(d)}). In
other words, $2\mid u-1$. In other words, $u-1=2g$ for some $g\in\mathbb{Z}$.
Consider this $g$. From $u-1=2g$, we obtain $\left( -1\right) ^{u-1}=\left(
-1\right) ^{2g}=\left( \underbrace{\left( -1\right) ^{2}}_{=1}\right)
^{g}=1^{g}=1$. Now, $\left( -1\right) ^{u}=\left( -1\right)
\underbrace{\left( -1\right) ^{u-1}}_{=1}=-1$. This proves Proposition
\ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(f)}.
\textbf{(g)} In Corollary 2.6.9 \textbf{(d)} of
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class notes},
we have proven $u=\left( u//n\right)
n+\left( u\%n\right) $ for any positive integer $n$. Applying this to $n=2$,
we obtain $u=\left( u//2\right) \cdot2+\left( u\%2\right) $. This proves
Proposition \ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(g)}.
\end{proof}
In order to prove \eqref{sol.binom.-2choosek-sum.new-goal}, we distinguish
between two cases:
\textit{Case 1:} The integer $n$ is even.
\textit{Case 2:} The integer $n$ is odd.
Let us first consider Case 1. In this case, the integer $n$ is even. Thus,
$\left( -1\right) ^{n}=1$ (by Proposition
\ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(e)}, applied to $u=n$).
Furthermore, $n$ is even, and thus $n\equiv0\operatorname{mod}2$ (by
Proposition \ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(c)}, applied to
$u=n$). Hence, $\underbrace{n}_{\equiv0\operatorname{mod}2}+2\equiv
0+2=2\equiv0\operatorname{mod}2$. In other words, $n+2$ is even (by
Proposition \ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(c)}, applied to
$u=n+2$). In other words, $\left( n+2\right) \%2=0$ (by Proposition
\ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(a)}, applied to $u=n+2$).
Now, Proposition \ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(g)} (applied
to $u=n+2$) yields
\[
\left( n+2\right) =\left( \left( n+2\right) //2\right) \cdot
2+\underbrace{\left( \left( n+2\right) \%2\right) }_{=0}=\left( \left(
n+2\right) //2\right) \cdot2.
\]
Solving this for $\left( n+2\right) //2$, we find $\left( n+2\right)
//2=\left( n+2\right) /2$.
Now,%
\begin{align*}
\sum_{k=0}^{n}\left( -1\right) ^{k}\left( k+1\right) & =1-2+3-4\pm
\cdots+\underbrace{\left( -1\right) ^{n}}_{=1}\left( n+1\right) \\
& =1-2+3-4\pm\cdots+\left( n+1\right) \\
& =\underbrace{\left( 1-2\right) }_{=-1}+\underbrace{\left( 3-4\right)
}_{=-1}+\underbrace{\left( 5-6\right) }_{=-1}+\cdots+\underbrace{\left(
\left( n-1\right) -n\right) }_{=-1}+\left( n+1\right) \\
& =\underbrace{\underbrace{\left( \left( -1\right) +\left( -1\right)
+\left( -1\right) +\cdots+\left( -1\right) \right) }_{n/2\text{ addends}%
}}_{=n/2\cdot\left( -1\right) =-n/2}+\left( n+1\right) \\
& =-n/2+\left( n+1\right) =n/2+1.
\end{align*}
Comparing this with%
\[
\underbrace{\left( -1\right) ^{n}}_{=1}\left( \left( n+2\right)
//2\right) =\left( n+2\right) //2=\left( n+2\right) /2=n/2+1,
\]
we obtain $\sum_{k=0}^{n}\left( -1\right) ^{k}\left( k+1\right) =\left(
n+2\right) //2$. Hence, \eqref{sol.binom.-2choosek-sum.new-goal} is proved in
Case 1.
Let us next consider Case 2. In this case, the integer $n$ is odd. Thus,
$\left( -1\right) ^{n}=-1$ (by Proposition
\ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(f)}, applied to $u=n$).
Furthermore, $n$ is odd, and thus $n\equiv1\operatorname{mod}2$ (by
Proposition \ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(d)}, applied to
$u=n$). Hence, $\underbrace{n}_{\equiv1\operatorname{mod}2}+2\equiv
1+2=3\equiv1\operatorname{mod}2$. In other words, $n+2$ is odd (by Proposition
\ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(d)}, applied to $u=n+2$). In
other words, $\left( n+2\right) \%2=1$ (by Proposition
\ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(b)}, applied to $u=n+2$).
Now, Proposition \ref{prop.sol.binom.-2choosek-sum.evod} \textbf{(g)} (applied
to $u=n+2$) yields
\[
\left( n+2\right) =\left( \left( n+2\right) //2\right) \cdot
2+\underbrace{\left( \left( n+2\right) \%2\right) }_{=1}=\left( \left(
n+2\right) //2\right) \cdot2+1.
\]
Solving this for $\left( n+2\right) //2$, we find $\left( n+2\right)
//2=\left( \left( n+2\right) -1\right) /2=\left( n+1\right) /2$.
Now,%
\begin{align*}
\sum_{k=0}^{n}\left( -1\right) ^{k}\left( k+1\right) & =1-2+3-4\pm
\cdots+\underbrace{\left( -1\right) ^{n}}_{=-1}\left( n+1\right) \\
& =1-2+3-4\pm\cdots-\left( n+1\right) \\
& =\underbrace{\left( 1-2\right) }_{=-1}+\underbrace{\left( 3-4\right)
}_{=-1}+\underbrace{\left( 5-6\right) }_{=-1}+\cdots+\underbrace{\left(
n-\left( n+1\right) \right) }_{=-1}\\
& =\underbrace{\left( \left( -1\right) +\left( -1\right) +\left(
-1\right) +\cdots+\left( -1\right) \right) }_{\left( n+1\right) /2\text{
addends}}\\
& =\left( n+1\right) /2\cdot\left( -1\right) =-\left( n+1\right) /2.
\end{align*}
Comparing this with%
\[
\underbrace{\left( -1\right) ^{n}}_{=-1}\underbrace{\left( \left(
n+2\right) //2\right) }_{=\left( n+1\right) /2}=\left( -1\right) \left(
n+1\right) /2=-\left( n+1\right) /2,
\]
we obtain $\sum_{k=0}^{n}\left( -1\right) ^{k}\left( k+1\right) =\left(
n+2\right) //2$. Hence, \eqref{sol.binom.-2choosek-sum.new-goal} is proved in
Case 2.
We have now proven \eqref{sol.binom.-2choosek-sum.new-goal} in each of the two
Cases 1 and 2. Thus, \eqref{sol.binom.-2choosek-sum.new-goal} always holds. As
explained above, by proving \eqref{sol.binom.-2choosek-sum.new-goal}, we have
solved the exercise.
\subsection{Remark}
I have posed this exercise in a slightly different form as Exercise 1 on
homework set \#9 of
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17f/index.html}{UMN Fall 2017 Math
4990}. (The form was different in that I wrote $\left\lfloor \dfrac{n+2}%
{2}\right\rfloor $ instead of $\left( n+2\right) //2$. Of course, this is
the same thing.) See also
\href{http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw9os-chen.pdf}{Angela Chen's
solution} to that exercise.
The exercise is more or less a combination of \cite[Exercise 2.9]{detnotes}
and \cite[Exercise 3.5 \textbf{(b)}]{detnotes}. In fact, Lemma
\ref{lem.sol.binom.-2choosek-sum.-2choosek} above is the claim of
\cite[Exercise 3.5 \textbf{(b)}]{detnotes}, whereas the identity
\eqref{sol.binom.-2choosek-sum.new-goal} is the claim of \cite[Exercise
2.9]{detnotes} (except that \cite[Exercise 2.9]{detnotes} writes $%
\begin{cases}
n/2+1, & \text{if }n\text{ is even};\\
\left( n+1\right) /2, & \text{if }n\text{ is odd}%
\end{cases}
$ for $\left( n+2\right) //2$, but the equality of these two expressions is
easy to establish).
Yet another way to state the identity in the exercise is%
\[
\sum_{k=0}^{n}\dbinom{-2}{k}=\dfrac{1+\left( -1\right) ^{n}\cdot\left(
2n+3\right) }{4}.
\]
(Here, the \textquotedblleft oscillator\textquotedblright\ $\left( -1\right)
^{n}$ is being used instead of $\left( n+2\right) //2$ in order to obtain
different behavior for even and odd $n$.) Similar identities are%
\begin{align*}
\sum_{k=0}^{n}\dbinom{0}{k} & =1;\\
\sum_{k=0}^{n}\dbinom{-1}{k} & =\dfrac{1+\left( -1\right) ^{n}}{2}=\left(
n+1\right) \%2;\\
\sum_{k=0}^{n}\dbinom{-3}{k} & =\dfrac{1+\left( -1\right) ^{n}\cdot\left(
2n^{2}+8n+7\right) }{8};\\
\sum_{k=0}^{n}\dbinom{-4}{k} & =\dfrac{3+\left( -1\right) ^{n}\cdot\left(
4n^{3}+30n^{2}+68n+45\right) }{48}.
\end{align*}
More generally, I suspect that if $u\in\mathbb{N}$, then there is a polynomial
$q_{u}\left( x\right) $ of degree $u$ with rational coefficients such that
each $n\in\mathbb{N}$ satisfies%
\[
\sum_{k=0}^{n}\dbinom{-\left( u+1\right) }{k}=\dfrac{1}{2^{u+1}}+\left(
-1\right) ^{n}\cdot q_{u}\left( n\right) .
\]
\begin{thebibliography}{99999999} %
%Feel free to add your sources -- or copy some from the source code
%of the class notes ( http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.tex ).
%This is the bibliography: The list of papers/books/articles/blogs/...
%cited. The syntax is: "\bibitem[name]{tag}Reference",
%where "name" is the name that will appear in the compiled
%bibliography, and "tag" is the tag by which you will refer to
%the source in the TeX file. For example, the following source
%has name "GrKnPa94" (so you will see it referenced as
%"[GrKnPa94]" in the compiled PDF) and tag "GKP" (so you
%can cite it by writing "\cite{GKP}").
\bibitem[GrKnPa94]{GKP}Ronald L. Graham, Donald E. Knuth, Oren Patashnik,
\textit{Concrete Mathematics, Second Edition}, Addison-Wesley 1994.\newline
See \url{https://www-cs-faculty.stanford.edu/~knuth/gkp.html} for errata.
\bibitem[Grinbe19]{detnotes}Darij Grinberg, \textit{Notes on the combinatorial
fundamentals of algebra}, 10 January 2019. \newline%
\url{http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf} \newline The
numbering of theorems and formulas in this link might shift when the project
gets updated; for a ``frozen'' version whose numbering is guaranteed to match
that in the citations above, see
\url{https://github.com/darijgr/detnotes/releases/tag/2019-01-10} .
\end{thebibliography}
\end{document}