-
Notifications
You must be signed in to change notification settings - Fork 0
/
hw1s.tex
executable file
·718 lines (603 loc) · 28 KB
/
hw1s.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
% The LaTeX below is mostly computer-generated (for reasons of speed); don't expect it to be very readable. Sorry.
\documentclass[paper=a4, fontsize=12pt]{scrartcl}%
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\usepackage{amsmath,amsfonts,amsthm,amssymb}
\usepackage{mathrsfs}
\usepackage{sectsty}
\usepackage{hyperref}
\usepackage{graphicx}
\usepackage{framed}
\usepackage{ifthen}
\usepackage{lastpage}
\usepackage[headsepline,footsepline,manualmark]{scrlayer-scrpage}
\usepackage[height=10in,a4paper,hmargin={1in,0.8in}]{geometry}
\usepackage[usenames,dvipsnames]{xcolor}
\usepackage{tikz}
\usepackage{verbatim}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}%
\setcounter{MaxMatrixCols}{30}
%TCIDATA{OutputFilter=latex2.dll}
%TCIDATA{Version=5.50.0.2960}
%TCIDATA{LastRevised=Tuesday, February 12, 2019 21:04:52}
%TCIDATA{<META NAME="GraphicsSave" CONTENT="32">}
%TCIDATA{<META NAME="SaveForMode" CONTENT="1">}
%TCIDATA{BibliographyScheme=Manual}
%BeginMSIPreambleData
\providecommand{\U}[1]{\protect\rule{.1in}{.1in}}
%EndMSIPreambleData
\allsectionsfont{\centering \normalfont\scshape}
\setlength\parindent{20pt}
\newcommand{\CC}{\mathbb{C}}
\newcommand{\RR}{\mathbb{R}}
\newcommand{\QQ}{\mathbb{Q}}
\newcommand{\NN}{\mathbb{N}}
\newcommand{\PP}{\mathbb{P}}
\newcommand{\Z}[1]{\mathbb{Z}/#1\mathbb{Z}}
\newcommand{\ZZ}{\mathbb{Z}}
\newcommand{\id}{\operatorname{id}}
\newcommand{\lcm}{\operatorname{lcm}}
\newcommand{\set}[1]{\left\{ #1 \right\}}
\newcommand{\abs}[1]{\left| #1 \right|}
\newcommand{\tup}[1]{\left( #1 \right)}
\newcommand{\ive}[1]{\left[ #1 \right]}
\newcommand{\floor}[1]{\left\lfloor #1 \right\rfloor}
\newcommand{\underbrack}[2]{\underbrace{#1}_{\substack{#2}}}
\newcommand{\powset}[2][]{\ifthenelse{\equal{#2}{}}{\mathcal{P}\left(#1\right)}{\mathcal{P}_{#1}\left(#2\right)}}
\newcommand{\horrule}[1]{\rule{\linewidth}{#1}}
\newcommand{\nnn}{\nonumber\\}
\let\sumnonlimits\sum
\let\prodnonlimits\prod
\let\cupnonlimits\bigcup
\let\capnonlimits\bigcap
\renewcommand{\sum}{\sumnonlimits\limits}
\renewcommand{\prod}{\prodnonlimits\limits}
\renewcommand{\bigcup}{\cupnonlimits\limits}
\renewcommand{\bigcap}{\capnonlimits\limits}
\newtheoremstyle{plainsl}
{8pt plus 2pt minus 4pt}
{8pt plus 2pt minus 4pt}
{\slshape}
{0pt}
{\bfseries}
{.}
{5pt plus 1pt minus 1pt}
{}
\theoremstyle{plainsl}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{conjecture}[theorem]{Conjecture}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{examples}[theorem]{Examples}
\newtheorem{algorithm}[theorem]{Algorithm}
\newtheorem{question}[theorem]{Question}
\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newenvironment{statement}{\begin{quote}}{\end{quote}}
\newenvironment{fineprint}{\begin{small}}{\end{small}}
\iffalse
\newenvironment{proof}[1][Proof]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\newenvironment{question}[1][Question]{\noindent\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
\fi
\newcommand{\myname}{Darij Grinberg}
\newcommand{\myid}{00000000}
\newcommand{\mymail}{[email protected]}
\newcommand{\psetnumber}{1}
\ihead{Solutions to homework set \#\psetnumber}
\ohead{page \thepage\ of \pageref{LastPage}}
\ifoot{\myname, \myid}
\ofoot{\mymail}
\begin{document}
\title{ \normalfont {\normalsize \textsc{University of Minnesota, School of
Mathematics} }\\[25pt] \rule{\linewidth}{0.5pt} \\[0.4cm] {\huge Math 4281: Introduction to Modern Algebra, }\\Spring 2019: Homework 1\\\rule{\linewidth}{2pt} \\[0.5cm] }
\author{Darij Grinberg}
\maketitle
%----------------------------------------------------------------------------------------
% EXERCISE 1
%----------------------------------------------------------------------------------------
\rule{0pt}{0.3pt} \\[0.4cm]
\section{Exercise 1: Mutual divisibility is rare}
\subsection{Problem}
Let $a$ and $b$ be two integers such that $a \mid b$ and $b \mid a$. Prove
that $\left| a \right| = \left| b \right| $.
\subsection{Solution}
See \href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class
notes}, where this is Exercise 2.2.2. (The numbering may shift; it is one of
the exercises in the \textquotedblleft Divisibility\textquotedblright\ section.)
%----------------------------------------------------------------------------------------
% EXERCISE 2
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 2: Congruence means equal remainders}
\subsection{Problem}
Let $n$ be a positive integer. Let $u$ and $v$ be two integers. Prove that
$u\equiv v\mod n$ if and only if $u\%n=v\%n$.
\subsection{Solution}
See \href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class
notes}, where this is Exercise 2.6.1. (The numbering may shift; it is one of
the exercises in the \textquotedblleft Division with
remainder\textquotedblright\ section.)
%----------------------------------------------------------------------------------------
% EXERCISE 2
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 3: Even and odd}
\subsection{Problem}
Let $u$ be an integer.
\begin{enumerate}
\item[\textbf{(a)}] Prove that $u$ is even if and only if $u \% 2 = 0$.
\item[\textbf{(b)}] Prove that $u$ is odd if and only if $u \% 2 = 1$.
\item[\textbf{(c)}] Prove that $u$ is even if and only if $u \equiv0 \mod 2$.
\item[\textbf{(d)}] Prove that $u$ is odd if and only if $u \equiv1 \mod 2$.
\item[\textbf{(e)}] Prove that $u$ is odd if and only if $u + 1$ is even.
\item[\textbf{(f)}] Prove that exactly one of the two numbers $u$ and $u + 1$
is even.
\item[\textbf{(g)}] Prove that $u \left( u+1 \right) \equiv0 \mod 2$.
\item[\textbf{(h)}] Prove that $u^{2} \equiv-u \equiv u \mod 2$.
\end{enumerate}
\subsection{Solution}
See \href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class
notes}, where this is Exercise 2.7.1 parts \textbf{(a)} to \textbf{(h)}. (The
numbering may shift; it is one of the exercises in the \textquotedblleft Even
and odd numbers\textquotedblright\ section.)
%----------------------------------------------------------------------------------------
% EXERCISE 4
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 4: Factorials 102}
\subsection{Problem}
\begin{enumerate}
\item[\textbf{(a)}] Prove that
\[
\dfrac{1! \cdot2! \cdot\cdots\cdot\left( 2n \right) !}{n!} = 2^{n}
\cdot\prod_{i=1}^{n} \left( \left( 2i-1 \right) ! \right) ^{2}
\qquad\text{for each } n \in\mathbb{N} .
\]
\item[\textbf{(b)}] Prove that
\[
\sum_{k=0}^{n} \dfrac{1}{k! \cdot\left( k+2 \right) } = 1 - \dfrac
{1}{\left( n+2 \right) !} \qquad\text{for each } n \in\mathbb{N} .
\]
\end{enumerate}
\subsection{Solution}
We first recall that%
\begin{equation}
n!=n\cdot\left( n-1\right) !\qquad\text{for each positive integer }n.
\label{sol.factorials.102.fac-rec}%
\end{equation}
(This was the claim of Exercise 2 \textbf{(a)} on
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf}{homework set \#0}.)
\vspace{0.809pc}
\textbf{(a)} This is precisely \cite[Exercise 3.5 \textbf{(c)}]{detnotes},
with only a superficial difference (namely, I write \textquotedblleft$\left(
\prod_{i=1}^{n}\left( \left( 2i-1\right) !\right) \right) ^{2}%
$\textquotedblright\ instead of \textquotedblleft$\prod_{i=1}^{n}\left(
\left( 2i-1\right) !\right) ^{2}$\textquotedblright\ in \cite[Exercise 3.5
\textbf{(c)}]{detnotes}, but these two expressions are clearly equivalent). I
give two solutions in \cite[solution to Exercise 3.5 \textbf{(c)}]{detnotes}:
one by manipulation and one by induction. Here I will only show the solution
by manipulation:
Let $n\in\mathbb{N}$. Then, we can group the factors of the product
$1!\cdot2!\cdot\cdots\cdot\left( 2n\right) !$ into pairs of successive
factors. We thus obtain\footnote{Strictly speaking, we are tacitly using the
fact that each integer between $1$ and $2n$ (inclusive) can be written either
in the form $2i$ or in the form $2i-1$ for some $i\in\left\{ 1,2,\ldots
,n\right\} $, and that this $i$ is unique. The proof of this fact relies on
division with remainder.}%
\begin{align*}
& 1!\cdot2!\cdot\cdots\cdot\left( 2n\right) !\\
& =\left( 1!\cdot2!\right) \cdot\left( 3!\cdot4!\right) \cdot\cdots
\cdot\left( \left( 2n-1\right) !\cdot\left( 2n\right) !\right)
=\prod_{i=1}^{n}\left( \left( 2i-1\right) !\cdot\underbrace{\left(
2i\right) !}_{\substack{=\left( 2i\right) \cdot\left( 2i-1\right)
!\\\text{(by \eqref{sol.factorials.102.fac-rec})}}}\right) \\
& =\prod_{i=1}^{n}\underbrace{\left( \left( 2i-1\right) !\cdot\left(
2i\right) \cdot\left( 2i-1\right) !\right) }_{=\left( 2i\right)
\cdot\left( \left( 2i-1\right) !\right) ^{2}}=\prod_{i=1}^{n}\left(
\left( 2i\right) \cdot\left( \left( 2i-1\right) !\right) ^{2}\right) \\
& =\underbrace{\left( \prod_{i=1}^{n}\left( 2i\right) \right) }%
_{=2^{n}\prod_{i=1}^{n}i}\cdot\prod_{i=1}^{n}\left( \left( 2i-1\right)
!\right) ^{2}=2^{n}\underbrace{\left( \prod_{i=1}^{n}i\right) }%
_{=1\cdot2\cdot\cdots\cdot n=n!}\cdot\prod_{i=1}^{n}\left( \left(
2i-1\right) !\right) ^{2}=2^{n}n!\cdot\prod_{i=1}^{n}\left( \left(
2i-1\right) !\right) ^{2}.
\end{align*}
Dividing both sides of this equality by $n!$, we find%
\[
\dfrac{1!\cdot2!\cdot\cdots\cdot\left( 2n\right) !}{n!}=2^{n}\cdot
\prod_{i=1}^{n}\left( \left( 2i-1\right) !\right) ^{2}.
\]
This solves part \textbf{(a)} of the exercise.
\vspace{0.806pc}
\textbf{(b)} Again, the exercise can be proven by induction or by the
telescope principle. Let me show the latter solution. First, I quote the
telescope principle:
\begin{proposition}
\label{prop.sums.telescope}Let $m\in\mathbb{N}$. Let $a_{0},a_{1},\ldots
,a_{m}$ be $m+1$ real numbers. Then,
\[
\sum_{i=1}^{m}\left( a_{i}-a_{i-1}\right) =a_{m}-a_{0}.
\]
\end{proposition}
Now, let me solve the exercise. Let $n\in\mathbb{N}$. For each $i\in\left\{
0,1,\ldots,n\right\} $, we set $a_{i}=\dfrac{-1}{\left( i+2\right) !}$.
Thus, $a_{0},a_{1},\ldots,a_{n}$ are $n+1$ real numbers. We state the following:
\begin{statement}
\textit{Claim 1:} For each $i\in\left\{ 0,1,\ldots,n\right\} $, we have%
\[
a_{i}-a_{i-1}=\dfrac{1}{i!\cdot\left( i+2\right) }.
\]
\end{statement}
[\textit{Proof of Claim 1:} Let $i\in\left\{ 0,1,\ldots,n\right\} $. Then,
\eqref{sol.factorials.102.fac-rec} (applied to $i+1$ instead of $n$) yields
$\left( i+1\right) !=\left( i+1\right) \cdot i!$. Also,
\eqref{sol.factorials.102.fac-rec} (applied to $i+2$ instead of $n$) yields
$\left( i+2\right) !=\left( i+2\right) \cdot\left( i+1\right) !$.
The definition of $a_{i}$ yields%
\[
a_{i}=\dfrac{-1}{\left( i+2\right) !}=\dfrac{-1}{\left( i+2\right)
\cdot\left( i+1\right) !}\qquad\left( \text{since }\left( i+2\right)
!=\left( i+2\right) \cdot\left( i+1\right) !\right) .
\]
The definition of $a_{i-1}$ yields%
\[
a_{i-1}=\dfrac{-1}{\left( \left( i-1\right) +2\right) !}=\dfrac
{-1}{\left( i+1\right) !}\qquad\left( \text{since }\left( i-1\right)
+2=i+1\right) .
\]
Subtracting this equality from the previous one, we obtain
\begin{align*}
a_{i}-a_{i-1} & =\dfrac{-1}{\left( i+2\right) \cdot\left( i+1\right)
!}-\dfrac{-1}{\left( i+1\right) !}=\dfrac{1}{\left( i+1\right) !}%
-\dfrac{1}{\left( i+2\right) \cdot\left( i+1\right) !}=\dfrac{\left(
i+2\right) -1}{\left( i+2\right) \cdot\left( i+1\right) !}\\
& =\dfrac{i+1}{\left( i+2\right) \cdot\left( i+1\right) !}=\dfrac
{i+1}{\left( i+2\right) \cdot\left( i+1\right) \cdot i!}\qquad\left(
\text{since }\left( i+1\right) !=\left( i+1\right) \cdot i!\right) \\
& =\dfrac{1}{\left( i+2\right) \cdot i!}=\dfrac{1}{i!\cdot\left(
i+2\right) }.
\end{align*}
This proves Claim 1.]
Now, Proposition \ref{prop.sums.telescope} (applied to $m=n$) yields%
\begin{align*}
\sum_{i=1}^{n}\left( a_{i}-a_{i-1}\right) & =\underbrace{a_{n}%
}_{\substack{=\dfrac{-1}{\left( n+2\right) !}\\\text{(by the definition of
}a_{n}\text{)}}}-\underbrace{a_{0}}_{\substack{=\dfrac{-1}{\left( 0+2\right)
!}\\\text{(by the definition of }a_{0}\text{)}}}\\
& =\dfrac{-1}{\left( n+2\right) !}-\dfrac{-1}{\left( 0+2\right)
!}=\underbrace{\dfrac{1}{\left( 0+2\right) !}}_{=\dfrac{1}{2!}=\dfrac{1}{2}%
}-\dfrac{1}{\left( n+2\right) !}=\dfrac{1}{2}-\dfrac{1}{\left( n+2\right)
!}.
\end{align*}
Comparing this with%
\[
\sum_{i=1}^{n}\underbrace{\left( a_{i}-a_{i-1}\right) }_{\substack{=\dfrac
{1}{i!\cdot\left( i+2\right) }\\\text{(by Claim 1)}}}=\sum_{i=1}^{n}%
\dfrac{1}{i!\cdot\left( i+2\right) },
\]
we obtain%
\begin{equation}
\sum_{i=1}^{n}\dfrac{1}{i!\cdot\left( i+2\right) }=\dfrac{1}{2}-\dfrac
{1}{\left( n+2\right) !}. \label{sol.factorials.102.b.6}%
\end{equation}
But%
\begin{align*}
\sum_{k=0}^{n}\dfrac{1}{k!\cdot\left( k+2\right) } & =\sum_{i=0}^{n}%
\dfrac{1}{i!\cdot\left( i+2\right) }\qquad\left( \text{here, we have
renamed the summation index }k\text{ as }i\right) \\
& =\underbrace{\dfrac{1}{0!\cdot\left( 0+2\right) }}_{=\dfrac{1}{1\cdot
2}=\dfrac{1}{2}}+\underbrace{\sum_{i=1}^{n}\dfrac{1}{i!\cdot\left(
i+2\right) }}_{\substack{=\dfrac{1}{2}-\dfrac{1}{\left( n+2\right)
!}\\\text{(by \eqref{sol.factorials.102.b.6})}}}=\underbrace{\dfrac{1}%
{2}+\dfrac{1}{2}}_{=1}-\dfrac{1}{\left( n+2\right) !}=1-\dfrac{1}{\left(
n+2\right) !}.
\end{align*}
This solves part \textbf{(b)} of the exercise.
%----------------------------------------------------------------------------------------
% EXERCISE 5
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 5: Binomial coefficients 102}
\subsection{Problem}
Prove that
\[
\dfrac{\left( ab \right) !}{a! \left( b! \right) ^{a}} = \prod_{k=1}^{a}
\dbinom{kb-1}{b-1}
\]
for all $a \in\mathbb{N}$ and all positive integers $b$.
\subsection{Solution}
First, let us state an analogue of the telescope principle (Proposition
\ref{prop.sums.telescope}) for products instead of sums:
\begin{proposition}
\label{prop.sums.telescope-prod}Let $m\in\mathbb{N}$. Let $a_{0},a_{1}%
,\ldots,a_{m}$ be $m+1$ nonzero real numbers. Then,
\[
\prod_{i=1}^{m}\dfrac{a_{i}}{a_{i-1}}=\dfrac{a_{m}}{a_{0}}.
\]
\end{proposition}
\begin{proof}
[Proof of Proposition \ref{prop.sums.telescope-prod}.]Take your favorite proof
of Proposition \ref{prop.sums.telescope}, and replace addition by
multiplication, subtraction by division and sums by products. This will yield
a proof of Proposition \ref{prop.sums.telescope-prod}.
\end{proof}
Furthermore, recall the following facts:
\begin{proposition}
\label{prop.sol.binom.102.fac-form}If $n\in\mathbb{N}$ and $k\in\mathbb{N}$
are such that $n\geq k$, then
\[
\dbinom{n}{k}=\dfrac{n!}{k!\left( n-k\right) !}.
\]
\end{proposition}
Proposition \ref{prop.sol.binom.102.fac-form} is Exercise 3 \textbf{(a)} on
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf}{homework set \#0}.
\begin{proposition}
\label{prop.sol.binom.102.absorb}Any $n\in\mathbb{Q}$ and $k\in\mathbb{Q}$
satisfy
\[
k\dbinom{n}{k}=n\dbinom{n-1}{k-1}.
\]
\end{proposition}
Proposition \ref{prop.sol.binom.102.absorb} is Exercise 3 \textbf{(f)} on
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf}{homework set \#0}.
Now, let $a\in\mathbb{N}$, and let $b$ be a positive integer. Thus, $b\neq0$
(since $b$ is positive).
\begin{statement}
\textit{Claim 1:} We have
\[
\dbinom{kb-1}{b-1}=\dfrac{1}{k}\cdot\dfrac{1}{b!}\cdot\dfrac{\left(
kb\right) !}{\left( \left( k-1\right) b\right) !}%
\]
for each positive integer $k$.
\end{statement}
[\textit{Proof of Claim 1:} Let $k$ be a positive integer. Then, Proposition
\ref{prop.sol.binom.102.absorb} (applied to $kb$ and $b$ instead of $n$ and
$k$) yields%
\[
b\dbinom{kb}{b}=kb\dbinom{kb-1}{k-1}.
\]
We can cancel $b$ from this equality (since $b$ is nonzero), and thus obtain%
\[
\dbinom{kb}{b}=k\dbinom{kb-1}{k-1}.
\]
On the other hand, $k\geq1$ (since $k$ is a positive integer). We can multiply
this inequality by $b$ (since $b$ is positive) and thus obtain $kb\geq1b=b$.
Hence, Proposition \ref{prop.sol.binom.102.fac-form} (applied to $kb$ and $b$
instead of $n$ and $k$) yields $\dbinom{kb}{b}=\dfrac{\left( kb\right)
!}{b!\left( kb-b\right) !}=\dfrac{\left( kb\right) !}{b!\left( \left(
k-1\right) b\right) !}$ (since $kb-b=\left( k-1\right) b$). Comparing this
equality with $\dbinom{kb}{b}=k\dbinom{kb-1}{k-1}$, we obtain%
\[
k\dbinom{kb-1}{k-1}=\dfrac{\left( kb\right) !}{b!\left( \left( k-1\right)
b\right) !}.
\]
We can divide both sides of this equality by $k$ (since $k$ is positive and
thus nonzero); thus we obtain%
\[
\dbinom{kb-1}{b-1}=\dfrac{1}{k}\cdot\dfrac{\left( kb\right) !}{b!\left(
\left( k-1\right) b\right) !}=\dfrac{1}{k}\cdot\dfrac{1}{b!}\cdot
\dfrac{\left( kb\right) !}{\left( \left( k-1\right) b\right) !}.
\]
This proves Claim 1.]
Now,
\begin{align*}
& \prod_{k=1}^{a}\underbrace{\dbinom{kb-1}{b-1}}_{\substack{=\dfrac{1}%
{k}\cdot\dfrac{1}{b!}\cdot\dfrac{\left( kb\right) !}{\left( \left(
k-1\right) b\right) !}\\\text{(by Claim 1)}}}\\
& =\prod_{k=1}^{a}\left( \dfrac{1}{k}\cdot\dfrac{1}{b!}\cdot\dfrac{\left(
kb\right) !}{\left( \left( k-1\right) b\right) !}\right)
=\underbrace{\left( \prod_{k=1}^{a}\dfrac{1}{k}\right) }_{\substack{=\dfrac
{1}{\prod_{k=1}^{a}k}=\dfrac{1}{a!}\\\text{(since }\prod_{k=1}^{a}%
k=a!\text{)}}}\cdot\underbrace{\left( \prod_{k=1}^{a}\dfrac{1}{b!}\right)
}_{=\left( \dfrac{1}{b!}\right) ^{a}=\dfrac{1}{\left( b!\right) ^{a}}%
}\cdot\underbrace{\left( \prod_{k=1}^{a}\dfrac{\left( kb\right) !}{\left(
\left( k-1\right) b\right) !}\right) }_{\substack{=\prod_{i=1}^{a}%
\dfrac{\left( ib\right) !}{\left( \left( i-1\right) b\right)
!}\\\text{(here, we have renamed the}\\\text{index }k\text{ as }i\text{ in the
product)}}}\\
& =\dfrac{1}{a!}\cdot\dfrac{1}{\left( b!\right) ^{a}}\cdot\underbrace{\prod
_{i=1}^{a}\dfrac{\left( ib\right) !}{\left( \left( i-1\right) b\right)
!}}_{\substack{=\dfrac{\left( ab\right) !}{\left( 0b\right) !}\\\text{(by
Proposition \ref{prop.sums.telescope-prod},}\\\text{applied to }m=a\text{ and
}a_{i}=\left( ib\right) !\text{)}}}=\dfrac{1}{a!}\cdot\dfrac{1}{\left(
b!\right) ^{a}}\cdot\underbrace{\dfrac{\left( ab\right) !}{\left(
0b\right) !}}_{\substack{=\dfrac{\left( ab\right) !}{1}\\\text{(since
}\left( 0b\right) !=0!=1\text{)}}}\\
& =\dfrac{1}{a!}\cdot\dfrac{1}{\left( b!\right) ^{a}}\cdot\dfrac{\left(
ab\right) !}{1}=\dfrac{1}{a!}\cdot\dfrac{1}{\left( b!\right) ^{a}}%
\cdot\left( ab\right) !=\dfrac{\left( ab\right) !}{a!\left( b!\right)
^{a}}.
\end{align*}
This solves the exercise.
\subsection{Remark}
Proposition 2.17.12 in
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class notes}
says that $\dbinom{n}{k}$ is an integer for all
$n \in \ZZ$ and $k \in \QQ$.
In other words,
\begin{align}
\dbinom{n}{k} \in \ZZ
\qquad \text{for all } n \in \ZZ \text{ and } k \in \QQ .
\label{sol.binom.102.rmk.nkinZ}
\end{align}
Using this fact and the above exercise, we can show the
following:
\begin{corollary}
\label{cor.binom.102.rmk.div}
Let $a \in \NN$. Let $b$ be a positive integer.
Then, $a! \tup{b!}^a \mid \tup{ab}!$.
\end{corollary}
\begin{proof}[Proof of Corollary \ref{cor.binom.102.rmk.div}.]
The exercise yields
\[
\dfrac{\left( ab \right) !}{a! \left( b! \right) ^{a}}
= \prod_{k=1}^{a} \underbrack{\dbinom{kb-1}{b-1}}{\in \ZZ \\ \text{(by \eqref{sol.binom.102.rmk.nkinZ}, applied to $kb-1$ and $b-1$} \\ \text{instead of $n$ and $k$)}}
\in \ZZ .
\]
In other words, $a! \tup{b!}^a \mid \tup{ab}!$.
This proves Corollary \ref{cor.binom.102.rmk.div}.
\end{proof}
We refer to \cite[Chapter 5]{GKP} for further properties
of binomial coefficients.
%----------------------------------------------------------------------------------------
% EXERCISE 6
%----------------------------------------------------------------------------------------
\rule{\linewidth}{0.3pt} \\[0.4cm]
\section{Exercise 6: Binomial coefficients and coprimality}
\subsection{Problem}
It is well-known (see, e.g., \cite[Proposition 3.20]{detnotes}) that
\begin{equation}
\dbinom{n}{k}\in\mathbb{Z}\text{ for all }n\in\mathbb{Z}\text{ and }%
k\in\mathbb{N}. \label{eq.exe.binom.coprime-rat-cat-1.inZ}%
\end{equation}
(This is not at all clear from the definition of $\dbinom{n}{k}$; it is saying
that the product of any $k$ consecutive integers is divisible by $k!$. The
case of $k=2$ is the statement of Exercise 3 \textbf{(g)}.) Thus, we can study
the divisibility of binomial coefficients by various integers. There are
hundreds of theorems about this; this exercise is about one of them.
Let $a$ and $b$ be two coprime positive integers.
\begin{enumerate}
\item[\textbf{(a)}] Prove that $\dfrac{a}{a+b} \dbinom{a+b}{a} =
\dbinom{a+b-1}{a-1}$ and $\dfrac{b}{a+b} \dbinom{a+b}{a} = \dbinom{a+b-1}%
{b-1}$.
\item[\textbf{(b)}] Prove that if $h \in\mathbb{Q}$ satisfies $ah
\in\mathbb{Z}$ and $bh \in\mathbb{Z}$, then $h \in\mathbb{Z}$. (This is where
the coprimality of $a$ and $b$ comes into play.)
\item[\textbf{(c)}] Prove that $a+b \mid\dbinom{a+b}{a}$.
\item[\textbf{(d)}] Find a counterexample to the claim of part \textbf{(c)} if
$a$ and $b$ are allowed to not be coprime.
\end{enumerate}
\subsection{Solution}
We recall \textit{Bezout's theorem} (proven in
\href{http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf}{the class notes}):
\begin{theorem}
\label{thm.ent.gcd.bezout}Let $a$ and $b$ be two integers. Then, there exist
integers $x\in\mathbb{Z}$ and $y\in\mathbb{Z}$ such that%
\[
\gcd\left( a,b\right) =xa+yb.
\]
\end{theorem}
Both $a$ and $b$ are positive integers. Hence, the sum $a+b$ is a positive
integer as well. Thus, in particular, $a+b$ is nonzero.
\textbf{(a)} We have $a+b\geq a$ (since $b$ is positive and thus nonnegative).
Hence, Proposition \ref{prop.sol.binom.102.fac-form} (applied to $n=a+b$ and
$k=a$) yields
\[
\dbinom{a+b}{a}=\dfrac{\left( a+b\right) !}{a!\left( \left( a+b\right)
-a\right) !}=\dfrac{\left( a+b\right) !}{a!b!}\qquad\left( \text{since
}\left( a+b\right) -a=b\right) .
\]
The same argument (but with the roles of $a$ and $b$ interchanged) yields
\[
\dbinom{b+a}{b}=\dfrac{\left( b+a\right) !}{b!a!}=\dfrac{\left( b+a\right)
!}{a!b!}=\dfrac{\left( a+b\right) !}{a!b!}\qquad\left( \text{since
}b+a=a+b\right) .
\]
Comparing these two equalities, we obtain%
\begin{equation}
\dbinom{b+a}{b}=\dbinom{a+b}{a}. \label{sol.binom.coprime-rat-cat-1.symm}%
\end{equation}
Proposition \ref{prop.sol.binom.102.absorb} (applied to $n=a+b$ and $k=a$)
yields $a\dbinom{a+b}{a}=\left( a+b\right) \dbinom{a+b-1}{a-1}$. We can
divide both sides of this equality by $a+b$ (since $a+b$ is nonzero). We thus
obtain
\begin{equation}
\dfrac{a}{a+b}\dbinom{a+b}{a}=\dbinom{a+b-1}{a-1}.
\label{sol.binom.coprime-rat-cat-1.a.1}%
\end{equation}
The same argument (but with the roles of $a$ and $b$ interchanged) yields%
\[
\dfrac{b}{b+a}\dbinom{b+a}{b}=\dbinom{b+a-1}{b-1}.
\]
In view of \eqref{sol.binom.coprime-rat-cat-1.symm}, this rewrites as%
\[
\dfrac{b}{b+a}\dbinom{a+b}{a}=\dbinom{b+a-1}{b-1}.
\]
In view of $b+a=a+b$, this rewrites as%
\begin{equation}
\dfrac{b}{a+b}\dbinom{a+b}{b}=\dbinom{a+b-1}{b-1}.
\label{sol.binom.coprime-rat-cat-1.a.2}%
\end{equation}
Having proven both \eqref{sol.binom.coprime-rat-cat-1.a.1} and
\eqref{sol.binom.coprime-rat-cat-1.a.2}, we have thus solved part \textbf{(a)}
of the exercise. \\[0.4cm]
\textbf{(b)} Let $h\in\mathbb{Q}$ satisfy $ah\in\mathbb{Z}$ and $bh\in
\mathbb{Z}$. We must prove that $h\in\mathbb{Z}$.
Theorem \ref{thm.ent.gcd.bezout} shows that there exist integers
$x\in\mathbb{Z}$ and $y\in\mathbb{Z}$ such that $\gcd\left( a,b\right)
=xa+yb$. Consider these $x$ and $y$.
But we know that $a$ and $b$ are coprime. In other words, $\gcd\left(
a,b\right) =1$. Hence, $1=\gcd\left( a,b\right) =xa+yb$. Multiplying both
sides of this equality by $h$, we find%
\[
h\cdot1=h\left( xa+yb\right) =x\cdot\left( ah\right) +y\cdot\left(
bh\right) .
\]
All four numbers $x$, $ah$, $y$ and $bh$ on the right hand side of this
equality are integers (since $x\in\mathbb{Z}$, $ah\in\mathbb{Z}$,
$y\in\mathbb{Z}$ and $bh\in\mathbb{Z}$). Thus, the right hand side of this
equality is an integer. Therefore, so is the left hand side. In other words,
$h\cdot1\in\mathbb{Z}$. In other words, $h\in\mathbb{Z}$. This solves part
\textbf{(b)} of the exercise. \\[0.4cm]
\textbf{(c)} Recall that $a$ is a positive integer; hence, $a\in\mathbb{N}$
and $a-1\in\mathbb{N}$. Also, $b-1\in\mathbb{N}$ (since $b$ is a positive
integer). Now, \eqref{eq.exe.binom.coprime-rat-cat-1.inZ} yields $\dbinom
{a+b}{a}\in\mathbb{Z}$ (since $a+b\in\mathbb{Z}$ and $a\in\mathbb{N}$) and
$\dbinom{a+b-1}{a-1}\in\mathbb{Z}$ (since $a+b-1\in\mathbb{Z}$ and
$a-1\in\mathbb{N}$) and $\dbinom{a+b-1}{b-1}\in\mathbb{Z}$ (since
$a+b-1\in\mathbb{Z}$ and $b-1\in\mathbb{N}$).
Define $h\in\mathbb{Q}$ by $h=\dfrac{1}{a+b}\dbinom{a+b}{a}$. (This is
well-defined, since $a+b$ is nonzero and $\dbinom{a+b}{a}$ belongs to
$\mathbb{Z}$.)
From $h=\dfrac{1}{a+b}\dbinom{a+b}{a}$, we obtain%
\begin{align*}
ah & =a\cdot\dfrac{1}{a+b}\dbinom{a+b}{a}=\dfrac{a}{a+b}\dbinom{a+b}%
{a}=\dbinom{a+b-1}{a-1}\qquad\left( \text{by part \textbf{(a)} of this
exercise}\right) \\
& \in\mathbb{Z}.
\end{align*}
From $h=\dfrac{1}{a+b}\dbinom{a+b}{a}$, we also obtain%
\begin{align*}
bh & =b\cdot\dfrac{1}{a+b}\dbinom{a+b}{a}=\dfrac{b}{a+b}\dbinom{a+b}%
{a}=\dbinom{a+b-1}{b-1}\qquad\left( \text{by part \textbf{(a)} of this
exercise}\right) \\
& \in\mathbb{Z}.
\end{align*}
Thus, part \textbf{(b)} of this exercise yields $h\in\mathbb{Z}$. In view of
$h=\dfrac{1}{a+b}\dbinom{a+b}{a}=\dfrac{\dbinom{a+b}{a}}{a+b}$, this rewrites
as $\dfrac{\dbinom{a+b}{a}}{a+b}\in\mathbb{Z}$. In other words, $a+b\mid
\dbinom{a+b}{a}$ (since $a+b$ is nonzero). This solves part \textbf{(c)} of
the exercise. \\[0.4cm]
\textbf{(d)} For example, setting $a=2$ and $b=2$ yields a counterexample,
since $2+2\nmid\dbinom{2+2}{2}$. (In fact, $2+2=4\nmid6=\dbinom{4}{2}%
=\dbinom{2+2}{2}$.)
\begin{thebibliography}{99999999} %
%Feel free to add your sources -- or copy some from the source code
%of the class notes ( http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.tex ).
%This is the bibliography: The list of papers/books/articles/blogs/...
%cited. The syntax is: "\bibitem[name]{tag}Reference",
%where "name" is the name that will appear in the compiled
%bibliography, and "tag" is the tag by which you will refer to
%the source in the TeX file. For example, the following source
%has name "GrKnPa94" (so you will see it referenced as
%"[GrKnPa94]" in the compiled PDF) and tag "GKP" (so you
%can cite it by writing "\cite{GKP}").
\bibitem[GrKnPa94]{GKP}Ronald L. Graham, Donald E. Knuth, Oren Patashnik,
\textit{Concrete Mathematics, Second Edition}, Addison-Wesley 1994.\newline
See \url{https://www-cs-faculty.stanford.edu/~knuth/gkp.html} for errata.
\bibitem[Grinbe19]{detnotes}Darij Grinberg, \textit{Notes on the combinatorial
fundamentals of algebra}, 10 January 2019. \newline%
\url{http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf} \newline The
numbering of theorems and formulas in this link might shift when the project
gets updated; for a ``frozen'' version whose numbering is guaranteed to match
that in the citations above, see
\url{https://github.com/darijgr/detnotes/releases/tag/2019-01-10} .
\end{thebibliography}
\end{document}