-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathcuhk_detection_1000.py
52 lines (52 loc) · 1.92 KB
/
cuhk_detection_1000.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
dataset_type = 'CuhkDataset'
# change to you own path
data_root = '/home/yy1/2021/data/cuhk/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
#dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_ids']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
#img_scale=(1333, 800),
img_scale=(1000, 600),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=data_root + 'annotation/train_pid_new.json', # change to you own path
img_prefix=data_root + 'Image/SSM/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=data_root + 'annotation/test_new.json', # change to you own path
img_prefix=data_root + 'Image/SSM/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=data_root + 'annotation/test_new.json', # change to you own path
img_prefix=data_root + 'Image/SSM/',
proposal_file=data_root+'annotation/test/train_test/TestG50.mat',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')