Skip to content

Latest commit

 

History

History
910 lines (842 loc) · 29.5 KB

psi_benchmark.md

File metadata and controls

910 lines (842 loc) · 29.5 KB

隐语PSI Benchmark白皮书

This tutorial is only available in Chinese.

导语

为了方便大家快速了解隐语PSI的Benchmark,我们设计了10分钟上手手册,包含了亮点介绍、SecretFlow集群的易用搭建、Benchmark脚本、两方和三方PSI的Benchmark,希望能够帮助用户快速了解隐语PSI。

隐语PSI亮点

隐私集合求交(Private Set Intersection,简写为:PSI)是一类特定的安全多方计算(Multi-Party Computation, 即MPC)问题,其问题可以简单理解为:Alice 输入集合 X,Bob 输入集合 Y,双方执行 PSI 协议可以得到 X 和 Y 的交集,同时不在交集范围中的数据是受保护的,即 Alice 和 Bob 无法学习到除了交集以外的任何数据。

PSI协议有很多分类方法,按照底层依赖的密码学技术分类,主要包括:

  • 基于公钥密码的PSI方案,包括:基于判定型密钥交换(Decisional Diffie-Hellman, DDH)的PSI方案和基于RSA盲签名的PSI方案;
  • 基于不经意传输(Oblivious Transfer, OT)的PSI方案;
  • 基于通用MPC的PSI方案,例如基于混淆电路(Garbled Circuit, GC)的PSI方案;
  • 基于同态加密(Homomorphic Encryption, HE)的PSI方案。

PSI协议按照参与方的数量进行分类,可分为:

  • 两方PSI:参与方为2个;
  • 多方PSI:参与方>2个。

PSI协议按照所假设的安全模型分类,可分为:

  • 半诚实模型的PSI;
  • 恶意模型的PSI。

PSI协议按照设参与方的数据量差异,可分为:

  • 平衡PSI:参与方的数据量差异不大;
  • 非平衡PSI:参与方的数据量差异巨大,例如百万 vs 10亿。

SecretFlow SPU 实现了半诚实模型下的两方和三方PSI协议,计算安全强度是128-bit,统计安全强度是40-bit。

  • 两方PSI协议:

    • 基于DDH的PSI协议
      • 基于DDH的PSI协议相对简单易于理解和实现,依赖的密码技术已被广泛论证,通信量低,但计算量较大。
      • 隐语实现了基于椭圆曲线(Elliptic Curve)群的DDH PSI协议,支持的椭圆曲线类型包括:Curve25519,FourQ,SM2,Secp256k1等。
    • 基于OT扩展的KKRT16
      • KKRT16是第一个千万规模($2^{24}$)数据量求交时间在1分钟之内的PSI方案,通信量较大;
      • 隐语实现了KKRT16协议,并参考了进年来的性能优化和安全改进方案,例如:stash-less CuckooHash,[GKWW20]中 FixedKey AES作为 correlation-robust 哈希函数。
    • 基于PCG的RR22
      • RR22 PSI依赖的PCG(Pseudorandom Correlation Generator)方案是近年来mpc方向的研究热点,相比KKRT16在计算量和通信两方面都有了很大改进,从成本(monetary cost)角度更能满足实际业务需求。PCG实现依赖了近年来发展迅速的Silent-Vole原语,隐语在自研的底层密码库YACL中已经实现了Silent-Vole相关原语。
  • 三方PSI协议:

    • 基于DDH的三方PSI协议
      • 隐语自研了基于 ECDH 的三方 PSI 协议.注意我们实现的这个协议会泄漏两方交集大小,请自行判断是否满足使用场景的安全性。
  • 非平衡PSI协议:

    • 基于ECDH-OPRF的非平衡PSI协议
      • 隐语实现并开源了基于ECDH-OPRF的非平衡PSI(Unbalanced PSI)协议,在数据量非平衡场景下能得到更好的性能。
      • 具体来讲:与ECDH-PSI对比,ECDH-PSI需要在大数据集上进行两次加密操作;隐语实现的非平衡PSI只在大数据集上进行一次加密操作。所以在大数据集与小数据集的体量相差非常大的时候,总体计算量和运行时间大约仅是ECDH-PSI的$50%$。
      • 非平衡PSI还把协议分成离线和在线(offline/online)两个阶段,在提前执行离线(offline)阶段,得到离线数据缓存的情形下,在线阶段只需少量时间即可得到交集结果。

复现方式

一、测试机型环境

  • Python:3.10
  • pip: >= 19.3
  • OS: CentOS 7
  • SecretFlow: 1.6.1b0
  • CPU/Memory: 推荐最低配置是 8C16G
  • 硬盘:500G

二、安装conda

使用conda管理python环境,如果机器没有conda需要先安装,步骤如下:

sudo apt-get install wget
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

详细步骤

#sudo apt-get install wget
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
#安装
bash Miniconda3-latest-Linux-x86_64.sh
# 一直按回车然后输入yes
please answer 'yes' or 'no':
>>> yes
# 选择安装路径, 文件名前加点号表示隐藏文件
Miniconda3 will now be installed into this location:
>>> ~/.miniconda3
# 添加配置信息到 ~/.bashrc文件
Do you wish the installer to initialize Miniconda3 by running conda init? [yes|no]
[no] >>> yes
#运行配置信息文件
source ~/.bashrc
#测试是否安装成功
conda --version 

三、安装secretflow

# 创建干净的python环境
conda create -n sf-benchmark python=3.10

# 进入benchmark 环境
conda activate sf-benchmark

# 安装secretflow
pip install -U secretflow

# 创建一个sf-benchmark目录
mkdir sf-benchmark
cd sf-benchmark

验证安装是否成功 root目录下输入python然后回车;

>>> import secretflow as sf
>>> sf.init(['alice', 'bob', 'carol'], address='local')
>>> dev = sf.PYU('alice')
>>> import numpy as np
>>> data = dev(np.random.rand)(3, 4)
>>> sf.reveal(data)

如下图所示就代表环境搭建成功了

四、创建节点并启动集群

配置示例使用集群模式仿真模式,其它模式请参考secretfow部署文档。

创建ray header节点

创建ray header节点,选择一台机器为主机,在主机上执行如下命令,ip替换为主机的内网ip,命名为alice,端口选择一个空闲端口即可 注意:192.168.0.1 ip为mock的,请替换为实际的ip地址

RAY_DISABLE_REMOTE_CODE=true \
ray start --head --node-ip-address="192.168.0.1" --port="9394" --resources='{"alice": 8}' --include-dashboard=False

创建从属节点

创建从属节点,在bob机器执行如下命令,ip依然填alice机器的内网ip,命名为bob,端口不变

RAY_DISABLE_REMOTE_CODE=true \
ray start --address="192.168.0.1:9394" --resources='{"bob": 8}'

创建从属节点,在carol机器执行如下命令,ip依然填alice机器的内网ip,命名为carol,端口不变

RAY_DISABLE_REMOTE_CODE=true \
ray start --address="192.168.0.1:9394" --resources='{"carol": 8}'

验证节点是否启动

在python中测试节点是否启动成功,任意选一台机器输入python,执行下列代码,参数中address为头节点(alice)的地址,拿alice机器来验证,每输入一行下列代码回车一次:

>>> import secretflow as sf
>>> sf.init(['alice','bob'], address='192.168.0.1:9394')
>>> alice = sf.PYU('alice')
>>> bob = sf.PYU('bob')
>>> sf.reveal(alice(lambda x : x)(2))
>>> sf.reveal(bob(lambda x : x)(2))

如下图就代表节点创建成功了 同时我们也可以通过ray status去看节点的状态,前提是先进入sf环境(conda activate sf-benchmark)

生成数据

generate_psi.py脚本传到alice机器的root目录下,执行如下代码

# 生成三份一千万数据,默认交集50%
python3 generate_psi.py 10000000 10000000

# 生成三份一亿数据
python3 generate_psi.py 100000000 100000000

把生成的psi_1.csv cp到benchmark目录下,再通过scp的命令把psi_2.csv/psi_3.csv分别移到bob的benchmark目录下跟carol的benchark目录下

限制宽带/延迟

#100Mbps 10ms
 tc qdisc add dev eth0 root handle 1: tbf rate 100mbit burst 256kb latency 800ms
 tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 10msec limit 8000 

清除限制
tc qdisc del dev eth0 root
查看已有配置
tc qdisc show dev eth0

平衡PSI Benchmark脚本

支持的平衡PSI协议列表:

  • ECDH_PSI_2PC
  • KKRT_PSI_2PC
  • RR22_PSI_2PC
  • ECDH_PSI_3PC
import sys
import time
import logging

from absl import app
import spu
import secretflow as sf

# init log
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# SPU settings
cluster_def = {
    'nodes': [
        # <<< !!! >>> replace <192.168.0.1:12945> to alice node's local ip & free port
        {'party': 'alice', 'address': '192.168.0.1:12945', 'listen_address': '0.0.0.0:12945'},
        # <<< !!! >>> replace <192.168.0.2:12946> to bob node's local ip & free port
        {'party': 'bob', 'address': '192.168.0.2:12946', 'listen_address': '0.0.0.0:12946'},
        # <<< !!! >>> if you need 3pc test, please add node here, for example, add carol as rank 2
        # {'party': 'carol', 'address': '127.0.0.1:12347'},
    ],
    'runtime_config': {
        'protocol': spu.spu_pb2.SEMI2K,
        'field': spu.spu_pb2.FM128,
    },
}


def main(_):

    # sf init
    # <<< !!! >>> replace <192.168.0.1:9394> to your ray head
    sf.init(['alice','bob'], address='192.168.0.1:9394')
    alice = sf.PYU('alice')
    bob = sf.PYU('bob')
    carol = sf.PYU('carol')

    # <<< !!! >>> replace path to real parties local file path.
    input_path = {
        alice: '/data/psi_1.csv',
        bob: '/data/psi_2.csv',
        # if run with `ECDH_PSI_3PC`, add carol
        # carol: '/data/psi_3.csv',
    }
    output_path = {
        alice: '/data/psi_output.csv',
        bob: '/data/psi_output.csv',
        # if run with `ECDH_PSI_3PC`, add carol
        # carol: '/data/psi_output.csv',
    }
    select_keys = {
        alice: ['id'],
        bob: ['id'],
        # if run with `ECDH_PSI_3PC`, add carol
        # carol: ['id'],
    }
    spu = sf.SPU(cluster_def)

    # prepare data
    start = time.time()

    reports = spu.psi_csv(
        key=select_keys,
        input_path=input_path,
        output_path=output_path,
        receiver='alice',  # if `broadcast_result=False`, only receiver can get output file.
        protocol='KKRT_PSI_2PC',	# psi protocol
        precheck_input=False,  # will cost ext time if set True
        sort=False,  # will cost ext time if set True
        broadcast_result=False,  # will cost ext time if set True
    )
    print(f"psi reports: {reports}")
    logging.info(f"cost time: {time.time() - start}")

    sf.shutdown()


if __name__ == '__main__':
    app.run(main)

非平衡PSI Benchmark脚本

支持的非平衡PSI协议列表:

  • ECDH_OPRF_UB_PSI
离线阶段脚本
import os
import sys
import time
import logging
import multiprocessfrom absl import app
import spu
import secretflow as sf
#import random# init log
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
​
​
# SPU settings
cluster_def = {
    'nodes': [
        # <<< !!! >>> replace <192.168.0.1:17268> to alice node's local ip & free port
        {'party': 'alice', 'address': '192.168.0.1:17268', 'listen_address': '0.0.0.0:17268'},
        # <<< !!! >>> replace <192.168.0.2:17269> to bob node's local ip & free port
        {'party': 'bob', 'address': '192.168.0.2:17269', 'listen_address': '0.0.0.0:17269'},
    ],
    'runtime_config': {
        'protocol': spu.spu_pb2.SEMI2K,
        'field': spu.spu_pb2.FM128,
    },
}
​
link_desc = {
    'recv_timeout_ms': 3600000,
}

def main(_):
    # sf init
    # <<< !!! >>> replace <192.168.0.1:9394> to your ray head
    sf.shutdown()
    sf.init(['alice','bob'],address='192.168.0.1:9394',log_to_driver=True,omp_num_threads=multiprocess.cpu_count())
​
    # init log
    logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
​
    alice = sf.PYU('alice')
    bob = sf.PYU('bob')

    offline_input_path = {
        alice: 'dummyalice.csv',
        bob: '/root/benchmark/unbalanced_200000w.csv',
    }
    select_keys = {
        alice: ['id'],
        bob: ['id'],
    }
    spu = sf.SPU(cluster_def, link_desc)
​
    # offline
    print("=====offline phase====")
    start = time.time()
​
    offline_output_path = {
        alice: "/data/unbalanced_2000w_out.csv",
        bob: "/data/unbalanced_200000w_out.csv",
    }
​
    offline_preprocess_path = "/root/benchmark/offline_out/offline_psi0107.csv"
    secret_key = "000102030405060708090a0b0c0d0e0ff0e0d0c0b0a090807060504030201000"
    secret_key_path = "/root/benchmark/secret_key.bin"
    with open(secret_key_path, 'wb') as f:
            f.write(bytes.fromhex(secret_key))
​
    reports = spu.psi_csv(
        key=select_keys,
        input_path=offline_input_path,
        output_path=offline_output_path,
        receiver='alice',  # if `broadcast_result=False`, only receiver can get output file.
        protocol='ECDH_OPRF_UB_PSI_2PC_OFFLINE',        # psi protocol
        precheck_input=False,  # will cost ext time if set True
        sort=False,  # will cost ext time if set True
        broadcast_result=False,  # will cost ext time if set True
        bucket_size=10000000,
        curve_type="CURVE_FOURQ",
        preprocess_path=offline_preprocess_path,
        ecdh_secret_key_path=secret_key_path,
    )
    #print(f"psi reports: {reports}")
    logging.info(f"offline psi reports: {reports}")
    logging.info(f"cost time: {time.time() - start}")
​
    sf.shutdown()
​
​
if __name__ == '__main__':
    app.run(main)
在线阶段脚本
import os
import sys
import time
# import random
import logging
import multiprocessfrom absl import app
import spu
import secretflow as sf# init log
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
​
# SPU settings
cluster_def = {
    'nodes': [
        # <<< !!! >>> replace <192.168.0.1:17268> to alice node's local ip & free port
        {'party': 'alice', 'address': '192.168.0.1:17268', 'listen_address': '0.0.0.0:17268'},
        # <<< !!! >>> replace <192.168.0.2:17269> to bob node's local ip & free port
        {'party': 'bob', 'address': '192.168.0.2:17269', 'listen_address': '0.0.0.0:17269'},
    ],
    'runtime_config': {
        'protocol': spu.spu_pb2.SEMI2K,
        'field': spu.spu_pb2.FM128,
    },
}
​
link_desc = {
    'recv_timeout_ms': 3600000,
}

def main(_):
    # sf init
    # <<< !!! >>> replace <192.168.0.1:9394> to your ray head
    sf.shutdown()
    sf.init(['alice','bob'],address='192.168.0.1:9394',log_to_driver=True,omp_num_threads=multiprocess.cpu_count())
​
    # init log
    logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
​
    alice = sf.PYU('alice')
    bob = sf.PYU('bob')
​
    # <<< !!! >>> replace path to real parties local file path.
    online_input_path = {
        alice: '/root/benchmark/unbalanced_2000w.csv',
        bob: 'dummy.bob.csv',
    }
    output_path = {
        alice: '/data/unbalanced_20000wvs2000w.csv',
        bob: '/data/unbalanced_20000wvs2000w.csv',
    }
    select_keys = {
        alice: ['id'],
        bob: ['id'],
    }
    spu = sf.SPU(cluster_def, link_desc)

    offline_preprocess_path = "/root/benchmark/offline_out/offline_psi0107.csv"
    secret_key_path = "/root/benchmark/secret_key.bin"# online
    print("=====online phase====")
    start = time.time()
​
    reports = spu.psi_csv(
        key=select_keys,
        input_path=online_input_path,
        output_path=output_path,
        receiver='alice',  # if `broadcast_result=False`, only receiver can get output file.
        protocol='ECDH_OPRF_UB_PSI_2PC_ONLINE', # psi protocol
        precheck_input=True,  # will cost ext time if set True
        sort=True,  # will cost ext time if set True
        broadcast_result=False,  # will cost ext time if set True
        bucket_size=100000000,
        curve_type="CURVE_FOURQ",
        preprocess_path=offline_preprocess_path,
        ecdh_secret_key_path=secret_key_path,
    )
​
    #print(f"psi reports: {reports}")
    logging.info(f"online psi reports: {reports}")
    logging.info(f"cost time: {time.time() - start}")
​
    sf.shutdown()
​
​
if __name__ == '__main__':
    app.run(main)

五、Benchmark报告

我们分别在不同的带宽、数据量、机器配置设定下测量了PSI协议的性能。其中:

  • 隐语标准:带宽设定分别为LAN、100Mbps/10ms; 数据量涵盖1千万、1亿、10亿。
  • 信通院标准:带宽设定分别为LAN、100Mbps/50ms,数据量涵盖1亿(标准测试)和10亿(大规模测试)。

时间单位默认为秒,m表示分钟,h表示小时。

隐语测试标准下的Benchmark

机器配置 算法参数 协议 网络配置 1kw~1kw 1亿~1亿 10亿~10亿
32C64G receiver='alice',
protocol='ECDH_PSI_2PC',
curve_type='CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-2PC
(FourQ)
LAN 73 723 7491
(2.08 h)
100Mbps/10ms 74 729 7387
(2.06 h)
receiver='alice',
protocol='ECDH_PSI_2PC',
curve_type='CURVE_25519',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-2PC
(CURVE_25519)
LAN 110 1129 11377
(3.16 h)
100Mbps/10ms 115 1142 11504
(3.19 h)
receiver='alice',
protocol='ECDH_PSI_3PC',
curve_type='CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-3PC
(FourQ)
LAN 123 1170 13097
(3.63 h)
100Mbps/10ms 155 1499 17041
(4.7 h)
receiver='alice',
protocol='ECDH_PSI_3PC',
curve_type='CURVE_25519',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-3PC (CURVE_25519)
(3个参与方持有相同数据的50%,最后交集占比50%)
LAN 203 2017 22717
(6.16 h)
100Mbps/10ms 239 2349 25807
(7.2 h)
receiver='alice',
protocol='KKRT_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
KKRT_PSI_2PC
(百万分桶)
LAN 56 558 5970
(1.61 h)
100Mbps/10ms 144 1393 14295
(3.97 h)
receiver='alice',
protocol='RR22_FAST_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_FAST_PSI_2PC
(百万分桶)
LAN 28 273 3176
(0.88 h)
100Mbps/10ms 63 575 6025
(1.6 h)
receiver='alice',
protocol='RR22_LOWCOMM_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_LOWCOMM_PSI_2PC
(百万分桶)
LAN 31 317 3614
(1.00 h)
100Mbps/10ms 53 481 5310
(1.47 h)
receiver='alice',
protocol='RR22_MALICIOUS_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_MALICIOUS_PSI_2PC
(百万分桶)
LAN 23 232 1791
(0.49 h)
100Mbps/10ms 82 705 6840
(1.9 h)
16C32G receiver='alice',
protocol='ECDH_PSI_2PC',
curve_type='CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-2PC
(FourQ)
LAN 96 991 2.82 h
100Mbps/10ms 97 991 2.79 h
receiver='alice',
protocol='ECDH_PSI_2PC',
curve_type='CURVE_25519',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-2PC
(CURVE_25519)
LAN 170 1730 4.8 h
100Mbps/10ms 179 1790 5.02 h
receiver='alice',
protocol='ECDH_PSI_3PC',
curve_type='CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-3PC
(FourQ)
LAN 174 1687 5.4 h
100Mbps/10ms 209 2007 6.5 h
receiver='alice',
protocol='ECDH_PSI_3PC',
curve_type='CURVE_25519',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-3PC (CURVE_25519)
(3个参与方持有相同数据的50%,最后交集占比50%)
LAN 346 3456 10.6 h
100Mbps/10ms 383 3781 11.7 h
receiver='alice',
protocol='KKRT_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
KKRT_PSI_2PC
(百万分桶)
LAN 55 565 2.05 h
100Mbps/10ms 147 1435 4.34 h
receiver='alice',
protocol='RR22_FAST_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_FAST_PSI_2PC
(百万分桶)
LAN 31 273 1.17 h
100Mbps/10ms 69 628 2.06 h
receiver='alice',
protocol='RR22_LOWCOMM_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_LOWCOMM_PSI_2PC
(百万分桶)
LAN 31 308 1.37 h
100Mbps/10ms 58 545 1.87 h
receiver='alice',
protocol='RR22_MALICIOUS_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_MALICIOUS_PSI_2PC
(百万分桶)
LAN 23 184 0.57 h
100Mbps/10ms 86 737 2.05 h
8C16G receiver='alice',
protocol='ECDH_PSI_2PC',
curve_type='CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-2PC
(FourQ)
LAN 145 1453 4.12 h
100Mbps/10ms 147 1470 4.14 h
receiver='alice',
protocol='ECDH_PSI_2PC',
curve_type='CURVE_25519',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-2PC
(CURVE_25519)
LAN 302 3021 8.4 h
100Mbps/10ms 302 3025 8.4 h
receiver='alice',
protocol='ECDH_PSI_3PC',
curve_type='CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-3PC
(FourQ)
LAN 277 2700 8.4 h
100Mbps/10ms 313 3059 9.5 h
receiver='alice',
protocol='ECDH_PSI_3PC',
curve_type='CURVE_25519',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-3PC
(CURVE_25519)
(3个参与方持有相同数据的50%,最后交集占比50%)
LAN 633 6298 19 h
100Mbps/10ms 672 6661 20.18 h
receiver='alice',
protocol='KKRT_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
KKRT_PSI_2PC
(百万分桶)
LAN 59 570 2.0 h
100Mbps/10ms 148 1441 4.3 h
receiver='alice',
protocol='RR22_FAST_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_FAST_PSI_2PC
(百万分桶)
LAN 31 277 1.19 h
100Mbps/10ms 70 636 2.08 h
receiver='alice',
protocol='RR22_LOWCOMM_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_LOWCOMM_PSI_2PC
(百万分桶)
LAN 35 319 1.41 h
100Mbps/10ms 59 550 1.86 h
receiver='alice',
protocol='RR22_MALICIOUS_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_MALICIOUS_PSI_2PC
(百万分桶)
LAN 25 194 0.6 h
100Mbps/10ms 80 734 2.05 h
  • ECDH:对网络配置不敏感,对计算资源敏感,适合带宽较低、计算配置较高的使用场景;
  • KKRT:网络设置为100Mbps时,带宽成为瓶颈。通常用于两方数据量均衡时,适合高带宽的使用场景;

信通院测试标准下的Benchmark

机器配置 算法参数 协议 大规模
(10亿~10亿)
(100Mbps/50ms)
标准
1亿~1亿
(LAN)
32C256G "receiver='alice',
protocol='ECDH_PSI_2PC',
curve_type = 'CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-2PC
(CURVE_FOURQ)
7764
(2.15 h)
729
"receiver='alice',
protocol='ECDH_PSI_2PC',
curve_type = 'CURVE_25519',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH-PSI-2PC
(CURVE_25519)
11555
(3.2 h)
1131
"receiver='alice',
protocol='ECDH_OPRF_UB_PSI_2PC',
curve_type = 'CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH_OPRF_UB_PSI_2PC
(非平衡)
(大规模 10亿&100w=50w)
(标准 1亿&10w=5w)
(CURVE_FOURQ)
offline: 1428 (23m)
offline: 300 (5m)
offline: 139
offline: 31
"receiver='alice',
protocol='ECDH_PSI_3PC',
curve_type = 'CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH_PSI_3PC
(CURVE_FOURQ)
17599
(4.8 h)
1172
"receiver='alice',
protocol='ECDH_PSI_3PC',
curve_type = 'CURVE_25519',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH_PSI_3PC
(CURVE_25519)
26220
(7.28 h)
2022
"receiver='alice',
protocol='ECDH_PSI_3PC',
curve_type = 'CURVE_FOURQ',
precheck_input=False,
sort=False,
broadcast_result=False,
ECDH_PSI_3PC
(非平衡)
(大规模 10亿&10亿&100万=50)
(标准 1亿&1亿&10万=5)
(CURVE_FOURQ)
12441
(3.45 h)
894
"receiver='alice',
protocol='KKRT_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
KKRT_PSI_2PC
(百万分桶)
30963
(8.6 h)
554
"receiver='alice',
protocol='RR22_FAST_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_FAST_PSI_2PC
(百万分桶)
6236
(1.7 h)
280
"receiver='alice',
protocol='RR22_LOWCOMM_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_LOWCOMM_PSI_2PC
(百万分桶)
5659
(1.57 h)
323
"receiver='alice',
protocol='RR22_MALICIOUS_PSI_2PC',
precheck_input=False,
sort=False,
broadcast_result=False,
RR22_MALICIOUS_PSI_2PC
(百万分桶)
14847
(4.12 h)
203