-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.js
130 lines (116 loc) · 3.48 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// More API functions here:
// https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image
// the link to your model provided by Teachable Machine export panel
const URL = './my_model/';
let model, webcam, labelContainer, maxPredictions;
const photos = [
'ring_images/violet.png',
'ring_images/blue.png',
'ring_images/blue green.png',
'ring_images/green.png',
'ring_images/amber.png',
'ring_images/gray.png',
'ring_images/black.png',
];
const emotions = ['happy', 'neutral', 'disgusted', 'sad', 'fearful', 'angry', 'surprise'];
// Load the image model and setup the webcam
async function init() {
const modelURL = URL + 'model.json';
const metadataURL = URL + 'metadata.json';
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// or files from your local hard drive
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
model = await tmImage.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
// Convenience function to setup a webcam
const flip = true; // whether to flip the webcam
webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip
await webcam.setup(); // request access to the webcam
await webcam.play();
window.requestAnimationFrame(loop);
// append elements to the DOM
document.getElementById('webcam-container').appendChild(webcam.canvas);
labelContainer = document.getElementById('label-container');
for (let i = 0; i < maxPredictions; i++) {
// and class labels
labelContainer.appendChild(document.createElement('div'));
}
return true;
}
async function loop() {
webcam.update(); // update the webcam frame
const prediction = await predict();
await getEmotionImage(prediction);
window.requestAnimationFrame(loop);
}
// run the webcam image through the image model
async function predict() {
// predict can take in an image, video or canvas html element
const prediction = await model.predict(webcam.canvas);
return prediction;
}
function getEmotion(emotion) {
let idx;
switch (emotion) {
case 'happy':
idx = 0;
break;
case 'neutral':
idx = 1;
break;
case 'disgusted':
idx = 2;
break;
case 'sad':
idx = 3;
break;
case 'fearful':
idx = 4;
break;
case 'angry':
idx = 5;
break;
case 'surprise':
idx = 6;
break;
default:
idx = 3;
break;
}
return idx;
}
async function getEmotionImage(prediction) {
let max=0
for (let i = 0; i < maxPredictions; i++) {
const classPrediction =
prediction[i].className + ': ' + prediction[i].probability.toFixed(2);
labelContainer.childNodes[i].innerHTML = classPrediction;
const arr = classPrediction.split(': ');
const idx = getEmotion(arr[0])
if(parseFloat(arr[1])>max){
max = parseFloat(arr[1]);
const selected = photos [idx];
console.log('selected', selected);
console.log('img', document.getElementById('img').src);
document.getElementById('img').src = selected;
} else{
document.getElementById('img').src = photos[0];
}
// console.log('&&&&&&&', arr);
// console.log("classPrediction",classPrediction);
// const selected = photos[Math.floor(Math.random() * photos.length)];
// console.log('selected', selected);
// const selected =
// document.getElementById('img').src = selected;
}
}
let isSetWebcam = false;
async function isLoading() {
isSetWebcam = await init();
if (isSetWebcam) {
document.getElementById('spinner__icon').style = 'display:none;';
}
}
isLoading();
// getLandomImage();