forked from tae898/erc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-erc-text-full.py
170 lines (138 loc) · 4.71 KB
/
train-erc-text-full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""Full training script"""
import argparse
import json
import logging
import os
import torch
import yaml
from transformers import (AutoModelForSequenceClassification, AutoTokenizer,
Trainer, TrainingArguments)
from utils import ErcTextDataset, compute_metrics, get_num_classes
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
def main(
OUTPUT_DIR: str,
SEED: int,
DATASET: str,
BATCH_SIZE: int,
model_checkpoint: str,
roberta: str,
speaker_mode: str,
num_past_utterances: int,
num_future_utterances: int,
NUM_TRAIN_EPOCHS: int,
WEIGHT_DECAY: float,
WARMUP_RATIO: float,
**kwargs,
):
"""Perform full training with the given parameters."""
NUM_CLASSES = get_num_classes(DATASET)
with open(os.path.join(OUTPUT_DIR, "hp.json"), "r") as stream:
hp_best = json.load(stream)
LEARNING_RATE = hp_best["learning_rate"]
logging.info(f"(LOADED) best hyper parameters: {hp_best}")
OUTPUT_DIR = OUTPUT_DIR.replace("-seed-42", f"-seed-{SEED}")
EVALUATION_STRATEGY = "epoch"
LOGGING_STRATEGY = "epoch"
SAVE_STRATEGY = "epoch"
ROOT_DIR = "./multimodal-datasets/"
if model_checkpoint is None:
model_checkpoint = f"roberta-{roberta}"
PER_DEVICE_TRAIN_BATCH_SIZE = BATCH_SIZE
PER_DEVICE_EVAL_BATCH_SIZE = BATCH_SIZE * 2
if torch.cuda.is_available():
FP16 = True
else:
FP16 = False
LOAD_BEST_MODEL_AT_END = True
METRIC_FOR_BEST_MODEL = "eval_f1_weighted"
GREATER_IS_BETTER = True
args = TrainingArguments(
output_dir=OUTPUT_DIR,
evaluation_strategy=EVALUATION_STRATEGY,
logging_strategy=LOGGING_STRATEGY,
save_strategy=SAVE_STRATEGY,
per_device_train_batch_size=PER_DEVICE_TRAIN_BATCH_SIZE,
per_device_eval_batch_size=PER_DEVICE_EVAL_BATCH_SIZE,
load_best_model_at_end=LOAD_BEST_MODEL_AT_END,
seed=SEED,
fp16=FP16,
learning_rate=LEARNING_RATE,
num_train_epochs=NUM_TRAIN_EPOCHS,
weight_decay=WEIGHT_DECAY,
warmup_ratio=WARMUP_RATIO,
metric_for_best_model=METRIC_FOR_BEST_MODEL,
greater_is_better=GREATER_IS_BETTER,
)
ds_train = ErcTextDataset(
DATASET=DATASET,
SPLIT="train",
speaker_mode=speaker_mode,
num_past_utterances=num_past_utterances,
num_future_utterances=num_future_utterances,
model_checkpoint=model_checkpoint,
ROOT_DIR=ROOT_DIR,
SEED=SEED,
)
ds_val = ErcTextDataset(
DATASET=DATASET,
SPLIT="val",
speaker_mode=speaker_mode,
num_past_utterances=num_past_utterances,
num_future_utterances=num_future_utterances,
model_checkpoint=model_checkpoint,
ROOT_DIR=ROOT_DIR,
SEED=SEED,
)
ds_test = ErcTextDataset(
DATASET=DATASET,
SPLIT="test",
speaker_mode=speaker_mode,
num_past_utterances=num_past_utterances,
num_future_utterances=num_future_utterances,
model_checkpoint=model_checkpoint,
ROOT_DIR=ROOT_DIR,
SEED=SEED,
)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
model = AutoModelForSequenceClassification.from_pretrained(
model_checkpoint, num_labels=NUM_CLASSES
)
logging.info(f"training a full model with full data ...")
trainer = Trainer(
model=model,
args=args,
train_dataset=ds_train,
eval_dataset=ds_val,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
trainer.train()
logging.info(f"eval ...")
val_results = trainer.evaluate()
with open(os.path.join(OUTPUT_DIR, "val-results.json"), "w") as stream:
json.dump(val_results, stream, indent=4)
logging.info(f"eval results: {val_results}")
if len(ds_test) != 0:
logging.info(f"test ...")
test_results = trainer.predict(ds_test)
with open(os.path.join(OUTPUT_DIR, "test-results.json"), "w") as stream:
json.dump(test_results.metrics, stream, indent=4)
logging.info(f"test results: {test_results.metrics}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="erc RoBERTa text huggingface training"
)
parser.add_argument("--OUTPUT-DIR", type=str)
parser.add_argument("--SEED", type=int)
args = parser.parse_args()
args = vars(args)
with open("./train-erc-text.yaml", "r") as stream:
args_ = yaml.safe_load(stream)
for key, val in args_.items():
args[key] = val
logging.info(f"arguments given to {__file__}: {args}")
main(**args)