forked from intel/neural-compressor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconf.yaml
39 lines (36 loc) · 1.86 KB
/
conf.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
model: # mandatory. lpot uses this model name and framework name to decide where to save tuning history and deploy yaml.
name: inception_v1
framework: tensorflow # mandatory. supported values are tensorflow, pytorch, or mxnet; allow new framework backend extension.
quantization: # optional. tuning constraints on model-wise for advance user to reduce tuning space.
calibration:
sampling_size: 20 # optional. default value is the size of whole dataset. used to set how many portions of calibration dataset is used. exclusive with iterations field.
dataloader:
batch_size: 1
dataset:
Imagenet:
root: /path/to/imagenet/ # NOTE: modify to calibration dataset location if needed
transform:
ParseDecodeImagenet:
BilinearImagenet:
height: 224
width: 224
model_wise: # optional. tuning constraints on model-wise for advance user to reduc
activation:
algorithm: minmax
weight:
granularity: per_channel
evaluation: # optional. required if user doesn't provide eval_func in lpot.Quantization.
accuracy: # optional. required if user doesn't provide eval_func in lpot.Quantization.
metric:
topk: 1 # built-in metrics are topk, map, f1, allow user to register new metric.
dataloader:
batch_size: 1
last_batch: discard
dataset:
Imagenet:
root: /path/to/imagenet/ # NOTE: modify to evaluation dataset location if needed
transform:
ParseDecodeImagenet:
BilinearImagenet:
height: 224
width: 224