-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfew_shot.py
232 lines (205 loc) · 9.92 KB
/
few_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
torch.set_grad_enabled(False)
import random
import sys
import ipdb
import os
import openai
from tqdm import tqdm
import json
import numpy as np
import math
import pickle
import transformers
# from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
# from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer
from transformers import pipeline
from transformers import T5Tokenizer, T5Config, T5ForConditionalGeneration, T5EncoderModel
from datasets import Dataset, load_metric
import run_summarization
data = sys.argv[1]
split = sys.argv[2]
filter_ = sys.argv[3]
train_k_nn = int(sys.argv[4])
if sys.argv[5] == 'True':
static = True
else:
static = False
if data == 'semeval':
train_fp = 'data/train_semeval_1int.jsonl'
test_fp = 'data/test_semeval_1int.jsonl'
train_k_nn = 0
fact_k_nn = 0
beam_size = 5
num_return_sequences = 1
elif data == 'pnp':
if split == 'reg':
if filter_ == 'all':
train_fp = 'data/train_rand.jsonl'
dev_fp = 'data/dev_rand.jsonl'
test_fp = 'data/test_rand.jsonl'
elif filter_ == 'fil':
train_fp = 'data/train_rand_filter.jsonl'
dev_fp = 'data/dev_rand_filter.jsonl'
test_fp = 'data/test_rand_filter.jsonl'
elif split == 'nns':
if filter_ == 'all':
train_fp = 'data/train.jsonl'
dev_fp = 'data/dev.jsonl'
test_fp = 'data/test.jsonl'
elif filter_ == 'fil':
train_fp = 'data/train_filter.jsonl'
dev_fp = 'data/dev_filter.jsonl'
test_fp = 'data/test_filter.jsonl'
# train_k_nn = 5
fact_k_nn = 0
beam_size = 5
num_return_sequences = 1
clear_train_cache = True
# static = False
seed = random.random()
metric_type = 'nli' # sacrebleu/bleurt/nli
local_files_only = True
model = 't5-base'
mode = 't5'
def get_dataset(path, mode=None):
sentences, targets = [], []
targets_dict = {}
for i, line in enumerate(open(path)):
line = line.strip()
jline = json.loads(line)
# if data == 'semeval':
# sentences.append(jline['noun_phrase'])
# targets.append(' , '.join(jline['interpretations'][:3]))
# else:
if not jline['explicit_relation']:
jline['explicit_relation'] = jline['nnp']+' '+jline['nn']+' is None of '+jline['nnp']
input_ = jline['nnp']+' '+jline['nn']
if input_ not in targets_dict:
sentences.append(input_)
targets_dict[input_] = []
targets_dict[input_].append(jline['explicit_relation'])
targets = [' , '.join(targets_dict[key][:3]) for key in sentences]
dataset = Dataset.from_dict({'inputs': sentences, 'outputs': targets})
return dataset
train_dataset = get_dataset(train_fp)
print('Train dataset loaded...')
test_dataset = get_dataset(test_fp, mode='test')
print('Test dataset loaded...')
train_index_path = 'models/embeddings/train_index.faiss'
encoder = T5EncoderModel.from_pretrained('t5-base', local_files_only=local_files_only).to('cuda')
tokenizer = T5Tokenizer.from_pretrained('t5-base', local_files_only=local_files_only)
if not os.path.exists(train_index_path) or clear_train_cache:
# ctx_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base").to('cuda')
# ctx_tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
# train_with_embeddings = train_dataset.map(lambda example: {'embeddings': ctx_encoder(**ctx_tokenizer(example["inputs"], return_tensors="pt").to('cuda'))[0][0].cpu().numpy()})
train_with_embeddings = train_dataset.map(lambda example: {'embeddings': \
encoder(**tokenizer(example["inputs"], return_tensors="pt").to('cuda')).last_hidden_state[0].max(dim=0)[0].cpu().numpy()})
train_with_embeddings.add_faiss_index(column='embeddings')
train_with_embeddings.save_faiss_index('embeddings', train_index_path)
train_dataset = train_with_embeddings
else:
train_dataset.load_faiss_index('embeddings', train_index_path)
# if fact_k_nn != 0:
# facts_trainD = pickle.load(open(facts_train_fp,'rb'))
# facts_testD = pickle.load(open(facts_test_fp,'rb'))
if mode == 'read':
predictions = [l.strip() for l in open(ofp,'r').readlines()]
else:
# none_predictions = open(none_fp,'r').readlines()
# none_predictions = [int(n.strip()) for n in none_predictions]
# print(f'Number of none predictions read from {none_fp} = ', len(none_predictions)-sum(none_predictions))
print('Creating few shot inputs...')
if static:
random.seed(seed)
range_dataset = list(range(len(train_dataset)))
random.shuffle(range_dataset)
random_k_examples = range_dataset[:train_k_nn]
random_train_outputs = [train_dataset[k]["outputs"] for k in random_k_examples]
random_train_inputs = [train_dataset[k]["inputs"] for k in random_k_examples]
prompts, input_nps = [], []
for example_i, example in enumerate(tqdm(test_dataset)):
# if example_i > 100:
# break
test_input, target = example['inputs'], example['outputs']
_1_noun, _2_noun = test_input.split()
# if data != 'semeval' and none_predictions[example_i] == 0:
# prompt = 'NONE'
# else:
# few_shot_input = 'Compound Noun Paraphrasing\n\n'
if not static:
# test_embedding = q_encoder(**q_tokenizer(test_input, return_tensors="pt").to('cuda'))[0][0].numpy()
test_embedding = encoder(**tokenizer(test_input, return_tensors="pt").to('cuda')).last_hidden_state[0].max(dim=0)[0].cpu().numpy()
if train_k_nn > 0:
train_scores, train_retrieved_examples = train_dataset.get_nearest_examples('embeddings', test_embedding, k=train_k_nn)
train_outputs = train_retrieved_examples["outputs"][::-1]
train_inputs = train_retrieved_examples["inputs"][::-1]
else:
train_outputs, train_inputs = [], []
# if fact_k_nn != 0:
# train_fact_descs = [facts_trainD[train_input] for train_input in train_inputs]
# train_fact_descs = ['<fact> '+' , '.join([r.replace(';','') for r in tfd[:fact_k_nn]])+' </fact>' for tfd in train_fact_descs]
# fact_scores, fact_retrieved_examples = facts_dataset.get_nearest_examples('embeddings', test_embedding, k=fact_k_nn)
# fact_outputs = '<fact> '+' , '.join([r.replace(';','') for r in fact_retrieved_examples["facts"]])+' </fact>'
else:
train_outputs = random_train_outputs
train_inputs = random_train_inputs
if data == 'semeval':
prompt = ' , '.join(train_outputs)+f' {test_input} is a {_2_noun} <extra_id_0> {_1_noun}'# , {test_input} is a {_2_noun} <extra_id_1> {_1_noun} '
else:
if train_k_nn != 0:
prompt = ' . '.join(train_outputs)+f' . {test_input} <extra_id_0> {_1_noun} <extra_id_1>'
else:
prompt = f'{test_input} is a <extra_id_0> the {_1_noun} <extra_id_1>'
prompts.append(prompt)
input_nps.append(test_input)
predictions = []
t5_tokenizer = T5Tokenizer.from_pretrained(model)
t5_config = T5Config.from_pretrained(model)
t5_mlm = T5ForConditionalGeneration.from_pretrained(model, config=t5_config).to('cuda')
_1_missing, _2_missing = 0, 0
batch_size = 32
num_batches = int(math.ceil(len(prompts)/batch_size))
for bindx in tqdm(range(num_batches)):
b_prompts = prompts[batch_size*bindx:batch_size*(bindx+1)]
b_input_nps = input_nps[batch_size*bindx:batch_size*(bindx+1)]
encoded = t5_tokenizer.batch_encode_plus(b_prompts,
add_special_tokens=True,
return_tensors='pt',
padding=True)
input_ids = encoded['input_ids'].to('cuda')
outputs = t5_mlm.generate(input_ids=input_ids,
num_beams=beam_size,
num_return_sequences=num_return_sequences,
max_length=20)
for output, input_np in zip(outputs, b_input_nps):
_1_noun, _2_noun = input_np.split()
prediction = t5_tokenizer.decode(output[2:], skip_special_tokens=False, clean_up_tokenization_spaces=False)
if '<extra_id_1>' in prediction:
_1_index = prediction.index('<extra_id_1>')
p1 = prediction[:_1_index]
if '<extra_id_2>' in prediction:
_2_index = prediction.index('<extra_id_2>')
p2 = prediction[_1_index+12:_2_index].strip('.').strip()
else:
_1_missing += 1
p2 = ''
else:
print('extra_id_1 is missing!', prediction, _2_missing)
_2_missing += 1
p1 = prediction
p2 = ''
if data == 'semeval':
prediction = f'{_2_noun} {p1} {_1_noun}'
predictions.append(f'{_1_noun} {_2_noun} is a '+prediction)
else:
if train_k_nn != 0:
prediction = f'{input_np} {p1} {_1_noun} {p2}'.strip()
else:
prediction = f'{input_np} is a {p1} the {_1_noun} {p2}'.strip()
predictions.append(prediction)
# if data == 'semeval':
# of.write(_1_noun+'\t'+_2_noun+'\t'+prediction+'\t1\n')
# inpf.write(prompt+'\n\n')
metrics = run_summarization.compute_metrics_helper(predictions, test_dataset['outputs'], None, test=True)
print('BLEU, BLEURT, NLI: ', metrics['bleu_scores'], metrics['bleurt_scores'], metrics['nli_scores'])