-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzgul_ilp.py
275 lines (221 loc) · 9.12 KB
/
zgul_ilp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from dataset import JSONLDataset, TabularDataset, PickleDataset
#Azure
import models.openai as openai
from util import parse_example, parse_tsv_example, score_sets
import numpy as np
from dotenv import load_dotenv
from prompt import PromptGenerator
import argparse
from tqdm.auto import tqdm
import os
import json
import shutil
import logging
from datetime import datetime
import signal
import sys, pdb
import time
logger = logging.getLogger('main')
running = True
def signal_handler(sig, frame):
print('Exiting...')
global running
running = False
def parse_args():
parser = argparse.ArgumentParser(
prog='promptbench',
description='Prompt benchmarking utility'
)
parser.add_argument('-l', '--lang', type=str)
parser.add_argument('-d', '--dataset', type=str)
parser.add_argument('-p', '--prompt', type=str, default='ner')
parser.add_argument('-td', '--target-dataset', type=str)
parser.add_argument('-sd', '--source-dataset', type=str)
#parser.add_argument('-l', '--llama-url', type=str, help="LLaMa API URL")
parser.add_argument('-m', '--model', type=str, help="model", default='gpt-3.5-turbo')
parser.add_argument('-tr', '--target-retrieve', type=int, help="no. examples to retrieve from target", default=0)
parser.add_argument('-sr', '--source-retrieve', type=int, help="no. examples to retrieve from source", default=8)
parser.add_argument('-y', '--yes', action="store_true", help="Say yes to any conditionals")
parser.add_argument('-r', '--result-dir', type=str, default=f"results/run_{datetime.now().strftime('%Y%m%dT%H%M%S')}")
parser.add_argument('-ssim', '--source-sim', type=str, help="Source similarity matrix")
parser.add_argument('-tsim', '--target-sim', type=str, help="Target similarity matrix")
parser.add_argument('-s', '--split-start', type=int, default=0)
parser.add_argument('-e', '--split-end', type=int, default=100000)
parser.add_argument('-i', '--interm', type=int, default=10)
parser.add_argument('-t', '--temperature', type=float, default=0.0)
parser.add_argument('--slow', action="store_true", help="slow down API calls")
return parser.parse_args()
def create_save_dir(save_dir, overwrite):
if os.path.exists(save_dir):
if overwrite:
print('Output folder already exists, overwriting')
shutil.rmtree(save_dir)
else:
print('Overwrite preexisting output folder? (y/N): ', end='')
ch = input()
if (ch == 'y'):
shutil.rmtree(save_dir)
else:
save_dir += '_1'
os.makedirs(save_dir)
return save_dir
def setup_logger(save_dir):
logging.basicConfig(
filename=os.path.join(save_dir, 'logfile.log'),
filemode='a',
format='[%(asctime)s.%(msecs)d](%(name)s:%(levelname)s) %(message)s',
datefmt='%H:%M:%S',
level=logging.INFO
)
def gold_tags_to_tsv_output(sentence):
temp = sentence.strip().split(' ')
temp = [w.rsplit('_', 1) for w in temp]
return '\n'.join([f'{x[0]}\t{x[1]}' for x in temp])
def sentence_to_input(sentence):
temp = sentence.split(' ')
return "[" + ", ".join([f'"{a}"' for a in temp]) + "]"
def gold_tags_to_output(sentence):
temp = [a.rsplit('_', 1) for a in sentence.strip().split(' ')]
return "[" + ", ".join([f'(``{a[0]}", ``{a[1]}")' for a in temp]) + "]"
def construct_prompt(idx, example, tgt_ds, src_ds, tgt_sim_mat, src_sim_mat, pg,
prompt, n_from_tgt=0, n_from_src=8):
# retrieve demos
demos = []
if n_from_src > 0:
pdb.set_trace()
ind = np.argpartition(src_sim_mat[idx], -n_from_src)[-n_from_src:]
demos += [src_ds[i].copy() for i in ind]
#pdb.set_trace()
# will include itself, we don't want that
#pdb.set_trace()
if n_from_tgt > 0:
ind_tgt = tgt_sim_mat[idx].tolist()
if len(ind_tgt) > n_from_tgt and len(ind_tgt) == 100:
ind_tgt = np.argsort(tgt_sim_mat[idx])[::-1][1:1+n_from_tgt].tolist()
assert len(ind_tgt) == n_from_tgt
#pdb.set_trace()
tgt_demos = [tgt_ds[i].copy() for i in ind_tgt]
#assert len(tgt_demos) == n_from_tgt and idx not in ind_tgt
if 'output' not in tgt_demos[0]:
pdb.set_trace()
# convert silver tags to gold tag format
for d in tgt_demos:
d['output'] = ' '.join([f'{a}_{b}' for a,b in zip(d['input'].strip().split(' '), d['pred_labels'])])
demos += tgt_demos
examples = [d['output'] for d in demos]
for d in demos:
d['output'] = gold_tags_to_tsv_output(d['output'])
prompt = pg.create_prompt(f'{prompt}', demos=demos, sentence=example['input'])
#pdb.set_trace()
return (prompt, examples)
def get_response_from_gpt(example, task, prompt, model):
# confidence scores via sampling multiple times...
# not now.
completion = model.complete(prompt)
if completion is None or completion == "":
logger.error(f"Did not obtain response for input {example['input']}, setting everything to O")
model.cleanup()
return {
'gold_labels': [a.split('_') for a in example['output'].strip().split(' ')],
'pred_labels': [(a, 'O') for a in example['input'].strip().split(' ')]
}, completion
logger.info(f'Obtained completion: {completion}')
#pdb.set_trace()
response = parse_tsv_example(task, example, completion)
model.cleanup()
return response, completion
def save_data(data, save_dir):
with open(os.path.join(save_dir, f'responses.json'), 'w+') as outfile:
for response in data['responses']:
outfile.write(f"{json.dumps(response)}\n")
with open(os.path.join(save_dir, f'accuracies.csv'), 'w+') as accfile:
accfile.write(f"precision,recall,f1,total\n")
accfile.write(f"{data['precision']},{data['recall']},{data['f1']},{data['total']}\n")
def main():
signal.signal(signal.SIGINT, signal_handler)
args = parse_args()
#Azure
load_dotenv(os.path.join(os.path.dirname(__file__), '../.env'))
openai.setup_api_key(os.environ.get('OPENAI_API_KEY'))
save_dir = create_save_dir(args.result_dir, args.yes)
setup_logger(save_dir)
pg = PromptGenerator('prompts')
#Azure
model_args = openai.ChatGPT.DEFAULT_ARGS
model_args['engine'] = args.model
model_args['request_timeout'] = 100
#OpenAI
#model_args = openai.ChatGPT.DEFAULT_ARGS
#model_args['model'] = args.model
#model_args['timeout'] = 100
model = openai.ChatGPT(model_args)
ssim = np.load(args.source_sim)
#tsim = None
#if args.target_sim:
tsim = np.load(args.target_sim)
model.default_args['temperature'] = 0.0
if args.dataset.endswith('.pkl'):
ds = PickleDataset(args.dataset)[args.split_start:args.split_end]
elif args.dataset.endswith('.tsv'):
ds = TabularDataset(args.dataset, delimiter='\t')[args.split_start:args.split_end]
else:
logger.error('Dataset type not recognized. Continuing.')
exit()
sds = JSONLDataset(args.source_dataset)
tds = None
if args.target_dataset.endswith('.json'):
pdb.set_trace()
tds = JSONLDataset(args.target_dataset)
elif args.target_dataset.endswith('.tsv'):
tds = TabularDataset(args.target_dataset, delimiter='\t')
else:
logger.error('Dataset type not recognized. Continuing.')
exit()
interm = args.interm
data = {
'total': 0,
'responses': []
}
data_kv_store = {}
bar = tqdm(ds)
skip_ind = []
for i, example in enumerate(bar):
#if not running:
# break
#if i == 5:
# break
if interm==0:
score_sets(data)
save_data(data, save_dir)
interm=args.interm
bar.set_postfix(prec=f"{data['precision']*100:.2f}",
recall=f"{data['recall']*100:.2f}",
f1=f"{data['f1']*100:.2f}")
(prompt, examples) = construct_prompt(i, example, tds, sds, tsim, ssim, pg, args.prompt,
n_from_tgt=args.target_retrieve, n_from_src=args.source_retrieve)
response, completion = get_response_from_gpt(example, args.prompt, prompt, model)
#if args.slow:
time.sleep(5)
if completion != "" and completion is not None:
data['responses'].append({
**example,
**response,
'examples': examples
})
data['total'] += 1
data_kv_store[example['input']] = [response]
else:
skip_ind.append(i)
#data['total'] += 1
# put response in K-V store
interm-=1
score_sets(data)
save_data(data, save_dir)
bar.set_postfix(prec=f"{data['precision']*100:.2f}",
recall=f"{data['recall']*100:.2f}",
f1=f"{data['f1']*100:.2f}")
print(f"{data['total']} examples run")
with open(save_dir+"/"+args.lang+"_skip_ind.json", "w") as f_w:
json.dump(skip_ind, f_w)
if __name__ == "__main__":
main()