forked from artyom-beilis/zx_spectrum_deep_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_c_data_set.py
75 lines (63 loc) · 2.26 KB
/
make_c_data_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from __future__ import print_function
from __future__ import division
import numpy as np
from scipy.ndimage import zoom
from imageio import imsave
from keras.datasets import mnist
import sys
import os
(x_train,y_train),(x_test,y_test) = mnist.load_data()
train_samples = np.zeros((10,64,8,8),dtype=np.uint8)
test_samples = np.zeros((10,64,8,8),dtype=np.uint8)
def load_samples(samples,x,y):
counters = np.zeros((10,),dtype=np.int32)
pos = 0
N = samples.shape[1]
for pos in range(y.shape[0]):
if np.sum(counters) >= N*10:
break
if counters[y[pos]] >= N:
continue
samples[y[pos],counters[y[pos]]] = (zoom(x[pos,2:-2,2:-2],1/3.0) > 48).astype(np.uint8)
counters[y[pos]] += 1
def samples_to_C(samples,var_name,path):
with open(path,'w') as f:
f.write('const int %s_size = %d;\n' % (var_name,samples.shape[1]))
f.write('unsigned char %s[%d][%d][8] = {\n' % (var_name,samples.shape[0],samples.shape[1]))
for cls in range(samples.shape[0]):
f.write(" {\n");
for n in range(samples.shape[1]):
f.write(" {");
for r in range(8):
value = 0;
for c in range(8):
if samples[cls,n,r,c]:
value = value | (0x80 >> c)
f.write('0x%02x,' % value)
f.write("},\n")
f.write(" },\n")
f.write("};\n");
def make_samples_image(samples,rows=1):
N=samples.shape[1]
C = (N+rows-1) // rows
img = np.zeros((10*rows*8,C*8),dtype=np.uint8)
try:
for dig in range(10):
for k in range(N):
r = dig*rows + k // C
c = k % C
pos_r = r * 8
pos_c = c * 8
img[pos_r:pos_r+8,pos_c:pos_c+8] = samples[dig,k,:,:]
except:
print(dig*rows)
print(k,k // rows)
print(img.shape,r,c,dig,k,N)
raise
img=img*255
return img
load_samples(train_samples,x_train,y_train)
load_samples(test_samples,x_test,y_test)
imsave('train.png',make_samples_image(train_samples))
samples_to_C(train_samples,'train_samples','train_samples.h')
samples_to_C(test_samples,'test_samples','test_samples.h')