-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdevelop_resnet_FCN.py
212 lines (190 loc) · 7.75 KB
/
develop_resnet_FCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import argparse
import torchvision
from torch.utils.data import DataLoader
import torch
from pathlib import Path
from typing import Tuple, List, Dict
import numpy as np
from tqdm import tqdm
from utils.data_utils import *
from utils.model_utils import *
import matplotlib.pyplot as plt
from sklearn.metrics import jaccard_score
def create_argparser() -> argparse.Namespace:
'''
defines the command line argument parser
'''
parser = argparse.ArgumentParser()
parser.add_argument("-pretrained", action="store_true", default=True)
parser.add_argument("-num_classes", type=int, default=37)
parser.add_argument("-batch_size", default=32)
parser.add_argument("-img_size", default=(128, 128))
parser.add_argument("-patience", default=5)
parser.add_argument("-result_dir", type=Path)
parser.add_argument("-train_result_filename", type=str)
parser.add_argument("-test_result_filename", type=str)
parser.add_argument("-lr", type=float, default=1e-4)
parser.add_argument("-model_save_name", default="model_1.pth.tar")
parser.add_argument("-num_epochs", default=15)
parser.add_argument("-data_root", default=Path("C:\\personal_ML\\Oxford_PyTorch\\"))
parser.add_argument("-continue_bool", action="store_true", default=False)
parser.add_argument("-start_epoch", type=int, default=0)
parser.add_argument("-weight_path")
return parser.parse_args()
def validate(
val_loader: DataLoader,
model: torchvision.models.segmentation.fcn_resnet101,
device: torch.device,
criterion: torch.optim,
num_classes: int
) -> torch.tensor:
'''
validates model
'''
with torch.no_grad():
model.eval()
val_loss = 0
for batch_image, batch_mask, batch_class in tqdm(val_loader, desc="Validating"):
batch_pred = model(batch_image.to(device))["out"].softmax(dim=1)
batch_onehot_segmask = onehot_segmask(batch_mask=batch_mask, batch_class=batch_class, num_classes=num_classes).to(device)
loss = criterion(batch_pred, batch_onehot_segmask)
val_loss += loss.item()
val_loss /= len(val_loader)
return val_loss
def train(
model: torchvision.models.segmentation.fcn_resnet101,
train_loader: DataLoader,
val_loader: DataLoader,
num_epochs: int,
patience: int,
num_classes: int,
criterion: torch.nn.CrossEntropyLoss,
optimizer: torch.optim,
device: torch.device,
result_dir: Path,
model_save_name: str,
continue_bool: bool,
start_epoch: int
) -> Tuple[List, List]:
'''
trains model and records training and validation loss throughout training
'''
patience_counter = 0
best_val_loss = np.inf
train_loss_list = []
val_loss_list = []
if continue_bool:
num_epochs += start_epoch
print("epoch range", start_epoch, num_epochs)
for epoch_idx in range(start_epoch, num_epochs):
if patience == patience_counter:
break
else:
epoch_loss = 0
model.train()
for batch_image, batch_seg_mask, batch_class in tqdm(train_loader, desc="Training"):
batch_pred = model(batch_image.to(device))["out"].softmax(dim=1)
batch_onehot_segmask = onehot_segmask(batch_mask=batch_seg_mask, batch_class=batch_class, num_classes=num_classes).to(device)
loss = criterion(batch_pred, batch_onehot_segmask)
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss += loss.item()
train_loss_list.append((epoch_idx+1, epoch_loss/len(train_loader)))
val_loss = validate(val_loader, model, criterion=criterion, device=device, num_classes=num_classes)
print(f"epoch {epoch_idx+1} validation loss", val_loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
save_checkpoint(state=model.state_dict(), filepath=result_dir.joinpath(model_save_name))
else:
patience_counter += 1
return train_loss_list, val_loss_list
def test_model(
test_loader: DataLoader,
model: torchvision.models.segmentation.fcn_resnet101,
device: torch.device,
num_classes: int,
result_dir: Path,
model_save_name: str
) -> Dict:
'''
measures model performance on the test dataset
'''
with torch.no_grad():
model = load_model(weight_path=result_dir.joinpath(model_save_name), model=model)
model.eval()
test_dict = {
"IoU": 0,
}
for batch_image, batch_seg_mask, batch_class in tqdm(test_loader, desc="Testing"):
batch_iou = 0
batch_pred = model(batch_image.to(device))["out"].softmax(dim=1)
batch_onehot_pred = onehot_pred(batch_pred=batch_pred, num_classes=num_classes)
batch_onehot_pred = batch_onehot_pred.argmax(dim=1)
for pred_idx in range(len(batch_pred)):
mask = batch_seg_mask[pred_idx, :, :]
mask *= batch_class[pred_idx]
mask = mask.int().cpu().numpy()
pred = batch_onehot_pred[pred_idx, :, :].int().cpu().numpy()
# macro calculates metrics for each label and returns the unweighted mean
batch_iou += jaccard_score(y_true=mask.flatten(), y_pred=pred.flatten(), average="macro")
batch_iou /= len(batch_pred)
print("batch IoU", batch_iou)
test_dict["IoU"] += batch_iou
test_dict["IoU"] /= len(test_loader)
print("test results", test_dict)
return test_dict
def main():
'''
trains, validates and tests resnet FCN
'''
args = create_argparser()
model = define_model(pre_trained=args.pretrained, num_classes=args.num_classes)
train_loader, val_loader, test_loader = create_dataloaders(
batch_size=args.batch_size, img_size=args.img_size, data_root=args.data_root
)
criterion = define_criterion()
optimizer = define_optimizer(model=model, learning_rate=args.lr)
device = define_device()
model = model.to(device)
if args.continue_bool:
model = load_model(weight_path=args.weight_path, model=model)
print_model_summary(model=model)
train_loss_list, val_loss_list = train(
model=model,
train_loader=train_loader,
val_loader=val_loader,
num_epochs=args.num_epochs,
patience=args.patience,
num_classes=args.num_classes,
criterion=criterion,
optimizer=optimizer,
device=device,
result_dir=args.result_dir,
model_save_name=args.model_save_name,
continue_bool=args.continue_bool,
start_epoch=args.start_epoch
)
save_train_results(
train_loss_list=train_loss_list,
val_loss_list=val_loss_list,
file_path=args.result_dir.joinpath(args.train_result_filename),
batch_size=args.batch_size,
learning_rate=args.lr,
continue_bool=args.continue_bool
)
test_dict = test_model(
test_loader=test_loader,
model=model,
device=device,
num_classes=args.num_classes,
result_dir=args.result_dir,
model_save_name=args.model_save_name
)
save_test_results(
file_path=args.result_dir.joinpath(args.test_result_filename),
test_dict=test_dict
)
if __name__ == "__main__":
main()