-
Notifications
You must be signed in to change notification settings - Fork 2
/
expenv.py
1364 lines (876 loc) · 36.8 KB
/
expenv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python2.5
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# Written (W) 2009-2011 Christian Widmer
# Copyright (C) 2009-2011 Max-Planck-Society
"""
Created on 09.03.2009
@author: Christian Widmer
@summary: SQLObject-based expenv framework
This module is meant to provide a general, easy-to-use and well-designed
experimental framework, that helps to keep track of which data and methods
led to which performance. It relies heavily on the package SQLObject, which
is used for database persistence. Expenv is meant to be used as a library,
which can easily be extended by inheritance. The stand-alone interface
provides an easy way to create and drop the tables defined within this module.
accepted argument values:
create\twill create all tables in module
drop\twill drop all tables in module
test\twill run simple test example (careful, tables will be dropped!!)
"""
import dbconnect
#import std packages
import time
import os
from random import choice
from collections import defaultdict
#import extra packages
import numpy
from sqlobject import SQLObject, StringCol, IntCol, FloatCol, BoolCol, TimestampCol, PickleCol, ForeignKey, RelatedJoin, MultipleJoin, SingleJoin
from sqlobject.inheritance import InheritableSQLObject
#import custom packages
from helper import split_list, Options
import helper
class Dataset(SQLObject):
"""
dataset and some meta data
"""
organism = StringCol(default="")
comment = StringCol(default="")
version = StringCol(default="")
signal = StringCol(default="")
instances = MultipleJoin("Instance")
def clean_up(self):
"""
method to recursively delete this entry from the database
"""
for instance in self.instances:
instance.clean_up()
self.destroySelf()
def create_split_set(self, num_splits, size_subset=0, size_testset=0, random=True):
"""
Splits data in num_splits parts and creates
the corresponding Split and SplitSet objects.
For the last split in the split set, the is_test_set
flag will be set.
Performs a random permutation if the random flag is set.
@param num_splits: number of desired splits (should be at least three)
@type num_splits: int
@param size_subset: if set to greater than zero only a subset of the dataset is used.
@type size_subset: int
@param random: flag to determine, whether order of data is kept
@type random: bool
"""
#instances = self.instances
instances = list(Instance.selectBy(dataset=self))
if size_subset == 0:
#we use all instances in dataset
size_subset = len(instances)
instances_idx = range(len(instances))
#permute list of idx if random flag is set
if random:
numpy.random.shuffle(instances_idx)
#only consider subset of dataset
instances_idx = instances_idx[0:size_subset]
print "total number of examples:", len(instances_idx)
split_idx_lists = []
if size_testset!=0:
#append test set
test_split_idx = instances_idx[0:size_testset]
split_idx_lists.append(test_split_idx)
#split remaning instances equally
instances_idx = instances_idx[size_testset:]
split_idx_lists.extend(split_list(instances_idx, num_splits-1))
else:
#split list
split_idx_lists = split_list(instances_idx, num_splits)
try:
assert(sum([len(s) for s in split_idx_lists])==size_subset)
except AssertionError, detail:
print detail
print "=============================="
print "sum split lengths:", sum([len(s) for s in split_idx_lists])
print "size_subset:", size_subset
raise AssertionError()
#create new split set
split_set = SplitSet(dataset=self, num_instances=size_subset)
for (i,split_idx_list) in enumerate(split_idx_lists):
print "adding ", str(i), " num_instances:", len(split_idx_list)
#set testset flag for first split
split = Split(is_test_set=(i==0), split_set = split_set, num=i, num_instances=len(split_idx_list))
#create split
for idx in split_idx_list:
instances[idx].split = split
#TODO revert to many-to-many
#split.addInstance(instances[idx])
assert(len(split.instances)==len(split_idx_list))
return split_set
class Instance(InheritableSQLObject):
"""
A class to hold a labeled example.
This class handles arbitrary feature types through a PickleCol field.
"""
#split = RelatedJoin("Split")
split = ForeignKey("Split", notNone=False, default=None)
dataset = ForeignKey("Dataset")
label = FloatCol(default=0.0)
example = PickleCol(default=None)
def clean_up(self):
"""
method to recursively delete this entry from the database
"""
self.destroySelf()
class SplitSet(SQLObject):
"""
A set of splits usually used in experiments
"""
dataset = ForeignKey("Dataset")
splits = MultipleJoin("Split")
num_instances = IntCol(default=0)
def clean_up(self):
"""
method to recursively delete this entry from the database
"""
for split in self.splits:
split.clean_up()
self.dataset.clean_up()
self.destroySelf()
def get_task_id(self):
"""
returns task identifier as string
"""
return self.dataset.organism
def get_test_set(self):
"""
helper method to obtain test set
"""
return self.splits[self.get_test_set_id()]
def get_test_set_id(self):
"""
helper method to obtain task id of test set
"""
test_set_ids = [id for (id, split) in enumerate(self.splits) if split.is_test_set]
# make sure that there is only one test set
assert len(test_set_ids) == 1, "more than one test set"
return test_set_ids[0]
def get_eval_data(self, x_val_idx, random=False):
"""
helper to fetch eval data
"""
eval_split = None
#return evaluation data
if x_val_idx!=-1:
for split in self.splits:
#exclude test non-eval data
if not split.is_test_set and split.num==x_val_idx:
print "getting eval data. split.num:", split.num, ", split.id:", split.id
#print [instance.id for instance in split.instances][0:5]
eval_split = split
break
assert(eval_split.is_test_set==False)
elif x_val_idx==-1:
for split in self.splits:
if split.is_test_set:
#print [instance.id for instance in split.instances][0:10]
print "getting test data. split.num:", split.num, ", split.id:", split.id
eval_split = split
break
# read from data file
#if True == False:
if split.data_file != None:
instances = load_data_from_file(split.data_file)
else:
#optimization to only use one query
instances = list(Instance.selectBy(split=eval_split).orderBy(["id"]))
#sometimes the query fails, so we retry once:
if len(instances)==0:
#wait one second
time.sleep(1)
print "query failed, retrying once"
instances = list(Instance.selectBy(split=eval_split).orderBy(["id"]))
#randomly shuffle because they are sorted by id per default
#if random:
# numpy.random.shuffle(instances)
return instances
def get_train_data(self, x_val_idx, random=False):
"""
helper to fetch train data
"""
data = []
#concatenate datasets
for split in self.splits:
#exclude test and evaluation data
if not split.is_test_set and split.num!=x_val_idx:
print "getting train data. split.num:", split.num, ", split.id:", split.id
# read from data in file
if split.data_file != None:
#if True == False:
instances = load_data_from_file(split.data_file)
else:
#optimization to only use one query
instances = list(Instance.selectBy(split=split).orderBy(["id"]))
print "number of instances:", len(instances)
#sometimes the query fails, so we retry once:
if len(instances)==0:
print "query failed, retrying once"
#wait one second
time.sleep(1)
instances = list(Instance.selectBy(split=split).orderBy(["id"]))
#randomly shuffle because they are sorted by id per default
#if random:
# numpy.random.shuffle(instances)
data.extend(instances)
#print "============================"
return data
def check_sanity(self):
"""
make sure intersection between splits and between train&eval sets is empty
"""
splits = self.splits
num_splits = len(splits)
for i in xrange(num_splits):
for j in xrange(i+1, num_splits):
idx_i = set([inst.id for inst in splits[i].instances])
idx_j = set([inst.id for inst in splits[j].instances])
assert(len(idx_i.intersection(idx_j))==0)
for i in xrange(1, num_splits):
train_idx = set([inst.id for inst in self.get_train_data(i)])
eval_idx = set([inst.id for inst in self.get_eval_data(i)])
assert(len(train_idx.intersection(eval_idx))==0)
def load_data_from_file(data_file):
"""
load data file and return examples
this implicitly defines the file format
"""
#format: (str(seq_record.seq), 1)
data = helper.load(data_file)
instances = []
for item in data:
# expand tuple
example, label = item
# create pseudo-object
instance = Options()
instance.example = example
instance.label = label
instance.freeze()
instances.append(instance)
# return subset
return instances
class MultiSplitSet(SQLObject):
"""
For the multi-source scenario, we need to deal
with several data sources.
"""
split_sets = RelatedJoin("SplitSet")
description = StringCol(default="")
feature_type = StringCol(default="") #possible values: string, real
taxonomy = ForeignKey("Taxonomy", default=None)
#general field to store data structures needed for the creation of the dataset
generation_data = PickleCol(default=None)
generation_data_path= "/fml/ag-raetsch/share/projects/multitask/generation_data/"
generation_file = ""
def set_generation_data(self, generation_parameters):
"""
trouble with db, thus save things on FS for now
"""
self.generation_file = self.generation_data_path + "mss_" + str(self.id) + ".bz2"
helper.save(self.generation_file, generation_parameters)
def get_generation_data(self):
"""
trouble with db, thus save things on FS for now
"""
gd = helper.load(self.generation_file)
return gd
def clean_up(self):
"""
method to recursively delete this entry from the database
"""
# clean up file
if self.generation_file and os.path.exists(self.generation_file):
os.remove(self.generation_file)
for split_set in self.split_sets:
split_set.clean_up()
self.destroySelf()
def get_eval_data(self, x_val_idx):
"""
helper to fetch eval data
returns a generator with elements (task_id, value)
"""
#return multi data as a list
for split in self.split_sets:
print "split_id", split.id
task_id = split.get_task_id()
print "task_id", task_id
yield task_id, split.get_eval_data(x_val_idx)
def get_train_data(self, x_val_idx):
"""
helper to fetch train data,
returns a dict{task_id, instances}
"""
multi_data = {}
#return multi data as a list
for split in self.split_sets:
task_id = split.get_task_id()
print "task_id", task_id
multi_data[task_id] = split.get_train_data(x_val_idx)
for (i,instances) in enumerate(multi_data.values()):
print "multi_split.get_train_data", i, len(instances)
return multi_data
class Split(SQLObject):
"""
A split is a subset of a dataset
"""
instances = MultipleJoin("Instance")
#instances = RelatedJoin("Instance")
split_set = ForeignKey("SplitSet")
is_test_set = BoolCol(default=False)
num = IntCol(default=0)
num_instances = IntCol(default=0)
data_file = StringCol(default=None)
def clean_up(self):
"""
method to recursively delete this entry from the database
"""
self.destroySelf()
class Run(SQLObject):
"""
Run is training and evaluation
"""
experiment = ForeignKey("Experiment")
assessment = ForeignKey("Assessment", notNone=False, default=None)
assessment_test = ForeignKey("Assessment", notNone=False, default=None)
method = ForeignKey("Method")
additional_information = PickleCol(default=None)
predictor_prefix = "/fml/ag-raetsch/share/projects/multitask/predictors/run_"
#important: points to the evaluation split
x_val_idx = IntCol(default=-1)
def clean_up(self):
"""
method to recursively delete this entry from the database
"""
# clean up file
predictor_fn = self.predictor_prefix + str(self.id)
if os.path.exists(predictor_fn):
print "deleting predictor file", predictor_fn
os.remove(predictor_fn)
if self.assessment:
self.assessment.clean_up()
if self.assessment_test:
self.assessment_test.clean_up()
self.destroySelf()
def get_eval_data(self):
"""
helper to fetch eval data
"""
data = self.experiment.split_set.get_eval_data(self.x_val_idx)
return data
def get_train_data(self):
"""
helper to fetch train data
"""
data = self.experiment.split_set.get_train_data(self.x_val_idx)
return data
def execute(self):
"""
train and predict using data and method
"""
#connect framework to method implementation
method_module = __import__(self.method.module_name)
method = method_module.Method(self.method.param)
method.train(self.get_train_data())
# attach data from training
self.additional_information = method.additional_information
# check relevant flags
is_test_run = self.method.param.flags.has_key("is_test_run") and self.method.param.flags["is_test_run"] == True
save_predictor = self.method.param.flags.has_key("save_predictor") and self.method.param.flags["save_predictor"] == True
if is_test_run and save_predictor:
predictor_fn = self.predictor_prefix + str(self.id) + ".gzip"
print "saving predictor to", predictor_fn
method.save_predictor(predictor_fn)
self.assessment = method.evaluate(self.get_eval_data())
# evaluate on test data right away
test_data = self.experiment.split_set.get_eval_data(-1)
self.assessment_test = method.evaluate(test_data)
def load_predictor(self):
"""
loads saved predictor from file system
"""
predictor = None
try:
predictor_fn = self.predictor_prefix + str(self.id) + ".gzip"
predictor = helper.load(predictor_fn, "gzip")
except Exception, detail:
print "error loading predictor"
print detail
return predictor
def __str__(self):
"""
informal string representation
"""
mystr = "run_id:" + str(self.id) + "\n"
mystr += "Method: " + str(self.method) + "\n"
mystr += "Info: " + str(self.additional_information) + "\n"
mystr += "Assessment: " + str(self.assessment)
return mystr
class Method(InheritableSQLObject):
"""
Holds information about the method
"""
experiment = ForeignKey("Experiment")
param = ForeignKey("Parameter")
name = StringCol(default="")
module_name = StringCol(default="")
svn_revision = IntCol(default=0)
predictor = PickleCol(default=None)
def clean_up(self):
"""
method to recursively delete this entry from the database
"""
if self.param:
self.param.destroySelf()
self.destroySelf()
def __str__(self):
"""
informal string representation
"""
mystr = self.module_name + " " + self.name + " (rev " + str(self.svn_revision) + ")\n"
mystr += "Method parameters: " + str(self.param)
return mystr
class Experiment(InheritableSQLObject):
"""
Base class for Experiments
An experiment includes ModelSelection and the
final performance assessment on test data
"""
name = StringCol(default="")
description = StringCol(default="")
method_name = StringCol(default="") #TODO: make this non-redundant
timestamp = TimestampCol(default=None)
runs = MultipleJoin("Run")
test_run = ForeignKey("Run", notNone=False, default=None)
methods = MultipleJoin("Method")
#fields for model selection
best_method = ForeignKey("Method", notNone=False, default=None)
best_mean_performance = FloatCol(default=0.0)
best_std_performance = FloatCol(default=0.0)
# allow the storage of arbitrary meta data for expermiment
meta_data = PickleCol(default=None)
def get_eval_runs(self):
"""
define python-style getter,
only get runs which are not the test run
"""
all_runs = list(self.runs)
test_run = self.test_run
if test_run and all_runs.count(test_run) > 0:
all_runs.remove(test_run)
return all_runs
def set_eval_runs(self, x):
"""
define python-style setter
@param x: eval runs to be set
@type x: None
"""
print "eval_runs is read-only"
# use python style getter to exclude test run from eval_runs
eval_runs = property(get_eval_runs,
set_eval_runs)
def clean_up(self):
"""
method to recursively delete this entry from the database
"""
# clear up runs
for run in self.runs:
run.clean_up()
# clean up methods
for method in self.methods:
method.clean_up()
self.destroySelf()
def __repr__(self):
"""
prepare string representation
"""
ret = "=========================\n"
ret += "Exper id:\t" + str(self.id) + "\n"
ret += "comment:\t" + self.description + "\n"
ret += "timestamp:\t" + str(self.timestamp) + "\n"
ret += "number of runs:\t" + str(len(self.runs)) + "\n"
ret += "Parameters:\t" + str(self.get_parameters()) + "\n"
try:
(best_method, best_target_eval, best_std_eval, best_target_test, best_std_test) = self.find_best_method("auROC")
ret += "Evaluation Performance by auROC: %.4f (%.4f)\n" % (best_target_eval, best_std_eval)
ret += "Test Performance by auROC: %.4f (%.4f)\n\n" % (best_target_test, best_std_test)
(best_method, best_target_eval, best_std_eval, best_target_test, best_std_test) = self.find_best_method("auPRC")
ret += "Evaluation Performance by auPRC: %.4f (%.4f)\n" % (best_target_eval, best_std_eval)
ret += "Test Performance by auPRC: %.4f (%.4f)\n" % (best_target_test, best_std_test)
except Exception, detail:
print "detailed performances not ready"
print detail
if self.test_run!=None:
ret += "Method Name:\t" + self.test_run.method.module_name + "\n"
ret += "Best Parameters:\t" + str(self.test_run.method.param) + "\n"
ret += "Eval perf:\t" + str(self.best_mean_performance) + "\n"
if self.test_run.assessment!=None:
ret += self.test_run.assessment.__repr__()
ret += "Info:\t" + str(self.test_run)
ret += "=================\n"
#ret += "Detailed Run Information\n"
#for run in self.eval_runs:
# ret += str(run)
#TODO: give dataset statistics
return ret
def get_parameters(self):
"""
helper method that looks through methods and
returns a dictionary with parameter names
mapped to the list of used parameters
"""
parameters = defaultdict(set)
for method in self.methods:
tmp_param = helper.get_member_dict(method.param, helper.get_sqlobject_member_list())
for (key, value) in tmp_param.items():
try:
parameters[key].add(value)
except:
print "skipping non-hashable object", key, value
return parameters
def find_best_method(self, target):
"""
select best eval method, average over runs
"""
best_method = 0
best_target_eval = 0
best_std_eval = 0
best_target_test = 0
best_std_test = 0
# we don't need to find best if there is only one method
if len(self.methods) == 1:
best_method = self.methods[0]
else:
for method in self.methods:
candidate_runs = [run for run in self.eval_runs if run.method.id == method.id]
for run in candidate_runs:
print "run id:", run.id
print target + ":", getattr(run.assessment, target)
tmp_score = float(numpy.mean([getattr(run.assessment, target) for run in candidate_runs]))
tmp_std = float(numpy.std([getattr(run.assessment, target) for run in candidate_runs]))
tmp_score_test = 0
tmp_std_test = 0
try:
# determine performance on test set, but select on eval set
tmp_score_test = float(numpy.mean([getattr(run.assessment_test, target) for run in candidate_runs]))
tmp_std_test = float(numpy.std([getattr(run.assessment_test, target) for run in candidate_runs]))
except Exception, detail:
print "assessment_test missing"
print detail
if (tmp_score>best_target_eval):
best_method = method
best_target_eval = tmp_score
best_std_eval = tmp_std
best_target_test = tmp_score_test
best_std_test = tmp_std_test
return (best_method, best_target_eval, best_std_eval, best_target_test, best_std_test)
def select_best_method(self, target):
"""
write best method to database
"""
(best_method, best_target_eval, best_std_eval, best_target_test, best_std_test) = self.find_best_method(target)
self.best_method = best_method
self.best_mean_performance = best_target_eval
self.best_std_performance = best_std_eval
return (best_method, best_target_eval, best_std_eval, best_target_test, best_std_test)
def create_test_run(self):
"""
creates Run object for test_run
assumes, that field best_method is set
"""
if self.best_method==None:
print "error: please determine best method first!"
return None
# we set the eval_set pointer to -1
self.test_run = Run(experiment=self, method=self.best_method, x_val_idx=-1)
return self.test_run
class SingleSourceExperiment(Experiment):
"""
Specialization for single-source experiments
"""
split_set = ForeignKey("SplitSet")
class MultiSourceExperiment(Experiment):
"""
Specialization for multi-source experiments
"""
split_set = ForeignKey("MultiSplitSet")
#TODO generalize to work for experiments
def create_eval_runs(self):
"""
creates Run objects based on splits
"""
if len(self.eval_runs)!=0:
print "warning: eval_runs already exist!"
return self.eval_runs
num_splits = -1
test_num = -1
#sanity checks:
for split_set in self.split_set.split_sets:
counter = 0
for split in split_set.splits:
if split.is_test_set:
if test_num != -1:
#all tasks have same test set num
assert(split.num==test_num)
test_num = split.num
counter += 1
if num_splits != -1:
#all tasks have same number of splits
assert(num_splits == counter)
num_splits = counter
#number of splits determines x-validation
for method in self.methods:
for split in self.split_set.split_sets[0].splits:
if not split.is_test_set:
run = Run(experiment=self, method=method, x_val_idx=split.num)