-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
111 lines (87 loc) · 4.34 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
'''
This file is a wrapper of the models including functions for training and evaluation
'''
from neural_nets import LinearModel, DenseModel, ConvModel
import keras.backend as K
import numpy as np
import os
from keras.callbacks import CSVLogger
class NNetWrapper(object):
def __init__(self, game, config):
'''
Game, an object, needs to have the following attributes:
game.getBoardSize() -> a tuple like (4, 4)
game.getActionSize() -> a tuple of (putActionSize, captureActionSize), where each of the actionSize is a tuple
- putActionSize = (16, 17, 3) * three dimensional
- captureActionSize = (16, 6) * two dimensional
game.getStateDepth() -> int. How deep is each state, such as 11
:param game: A game object
:param config: A config object. It's by default the config.py
'''
self.config = config
self.game = game
if self.config.model == 'linear':
self.nnet = LinearModel(game, config)
elif self.config.model == 'dense':
self.nnet = DenseModel(game, config)
elif self.config.model == 'conv':
self.nnet = ConvModel(game, config)
else:
raise ValueError('The model ' + self.config.model + ' has not been implemented!')
self.state_depth, self.board_x, self.board_y = game.board.state.shape
self.put_action_size = game.get_placement_action_size()
self.capture_action_size = game.get_capture_action_size()
def train(self, examples, i):
'''
:param examples: (state, pi_put, pi_capture, v) a tuple
state size=(num_examples, board_x, board_y, state_depth)
pi_put size = (num_examples, put_pi_size[0] * put_pi_size[1] * put_pi_size[2])
pi_capture size = (num_examples, capture_pi_size[0] * capture_pi_size[1])
v size = (num_examples, 1)
is_put = (num_examples, 1) binary array indicating if capture is valid for each example
:params i: iter number
:return:
'''
input_states, target_pi, target_vs = examples
#import pdb; pdb.set_trace()
# TODO: make sure that is capture
input_states = np.asarray(input_states)
target_put_pis = np.asarray(target_pi)
target_vs = np.asarray(target_vs)
if i == self.config.num_iters * 0.5:
curr_lr = K.get_value(self.nnet.model.optimizer.lr)
K.set_value(self.nnet.model.optimizer.lr, curr_lr * 0.1)
print "Learning rate decayed!"
if not os.path.exists('results'):
print("Checkpoint Directory does not exist! Making directory {}".format('results'))
os.mkdir('results')
csv_logger = CSVLogger('results/log_%i.csv'%i, append=True, separator=',')
self.nnet.model.fit(
x={'inputs':input_states},
y=[target_pi, target_vs],
batch_size=self.config.batch_size, epochs=self.config.epochs, verbose=1,
callbacks=[csv_logger])
def predict(self, states, is_put):
pi, v = self.nnet.model.predict([np.expand_dims(states, axis=0)])
put_pi_size = self.game.get_placement_action_shape()
capture_pi_size = self.game.get_capture_action_shape()
put_pi = pi[:, :self.game.get_placement_action_size()]
capture_pi = pi[:, self.game.get_placement_action_size():]
put_pi = np.reshape(put_pi, (-1, put_pi_size[0], put_pi_size[1], put_pi_size[2]))
capture_pi = np.reshape(capture_pi, (-1, capture_pi_size[0], capture_pi_size[1], capture_pi_size[2]))
return put_pi, capture_pi, v
def save_checkpoint(self, filename='checkpoint.pth.tar'):
folder = self.config.checkpoint_folder
filepath = os.path.join(folder, filename)
if not os.path.exists(folder):
print("Checkpoint Directory does not exist! Making directory {}".format(folder))
os.mkdir(folder)
else:
print("Checkpoint Directory exists! ")
self.nnet.model.save_weights(filepath)
def load_checkpoint(self, filename='checkpoint.pth.tar'):
folder = self.config.checkpoint_folder
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
raise ("No model in path {}".format(filepath))
self.nnet.model.load_weights(filepath)