|
| 1 | +import pandas as pd |
| 2 | +import pytest |
| 3 | +import os |
| 4 | +import copy |
| 5 | +from dlk.data.subprocessors.fast_tokenizer import FastTokenizer, FastTokenizerConfig |
| 6 | +from dlk.utils.get_root import get_root |
| 7 | +import json |
| 8 | +path = os.path.dirname((os.path.realpath('__file__'))) |
| 9 | +path_o = (os.path.realpath('__file__')) |
| 10 | + |
| 11 | +@pytest.fixture |
| 12 | +def default_single_config(request): |
| 13 | + return { |
| 14 | + "_name": "fast_tokenizer", |
| 15 | + "config": { |
| 16 | + "train": { |
| 17 | + "data_set": { |
| 18 | + "train": ["train", "valid", 'test', 'predict'], |
| 19 | + "predict": ["predict"], |
| 20 | + "online": ["online"] |
| 21 | + }, |
| 22 | + "config_path": "", |
| 23 | + "truncation": { |
| 24 | + "max_length": 10, |
| 25 | + "strategy": "longest_first" |
| 26 | + }, |
| 27 | + "normalizer": 'default', |
| 28 | + "pre_tokenizer": "default", |
| 29 | + "post_processor": "default", |
| 30 | + "output_map": { |
| 31 | + "tokens": "tokens", |
| 32 | + "ids": "input_ids", |
| 33 | + "attention_mask": "attention_mask", |
| 34 | + "type_ids": "type_ids", |
| 35 | + "special_tokens_mask": "special_tokens_mask", |
| 36 | + "offsets": "offsets", |
| 37 | + "word_ids": "word_ids", |
| 38 | + "overflowing": "overflowing", |
| 39 | + "sequence_ids": "sequence_ids", |
| 40 | + }, |
| 41 | + "input_map": { |
| 42 | + "sentence": "sentence", |
| 43 | + }, |
| 44 | + "deliver": "tokenizer", |
| 45 | + "process_data": { "is_pretokenized": False}, |
| 46 | + "data_type": "single", |
| 47 | + }, |
| 48 | + "predict": ["train", {"deliver": None}], |
| 49 | + "online": ["train", {"deliver": None}], |
| 50 | + } |
| 51 | + } |
| 52 | + |
| 53 | + |
| 54 | +class TestFastTokenizer(object): |
| 55 | + def test_default_tokenizer(self, default_single_config): |
| 56 | + default_single_config = copy.deepcopy(default_single_config) |
| 57 | + tokenizer_path = os.path.join(get_root(), 'tests/data/tokenizer/vocab_tokenizer.json') |
| 58 | + default_single_config['config']['train']['config_path'] = tokenizer_path |
| 59 | + tokenizer_config = FastTokenizerConfig(stage='train', config=default_single_config) |
| 60 | + tokenizer = FastTokenizer(stage='train', config=tokenizer_config) |
| 61 | + data = { |
| 62 | + "data": { |
| 63 | + "train": pd.DataFrame(data={'sentence': ["I have an apple."]}) |
| 64 | + } |
| 65 | + } |
| 66 | + result = tokenizer.process(data) |
| 67 | + result = result['data']['train'].iloc[0] |
| 68 | + assert result['sentence'] == "I have an apple." |
| 69 | + assert result['tokens'] == ['I', 'have', 'an', 'app', '##le', '.'] |
| 70 | + assert result['input_ids'] == [8, 9, 10, 6, 7, 11] |
| 71 | + assert result['attention_mask'] == [1, 1, 1, 1, 1, 1] |
| 72 | + assert result['type_ids'] == [0, 0, 0, 0, 0, 0] |
| 73 | + assert result['special_tokens_mask'] == [0, 0, 0, 0, 0, 0] |
| 74 | + assert result['offsets'] == [(0, 1), (2, 6), (7, 9), (10, 13), (13, 15), (15, 16)] |
| 75 | + assert result['word_ids'] == [0, 1, 2, 3, 3, 4] |
| 76 | + assert result['sequence_ids'] == [0, 0, 0, 0, 0, 0] |
| 77 | + |
| 78 | + def test_post_bert_prosess_tokenizer(self, default_single_config): |
| 79 | + default_single_config = copy.deepcopy(default_single_config) |
| 80 | + tokenizer_path = os.path.join(get_root(), 'tests/data/tokenizer/vocab_tokenizer.json') |
| 81 | + default_single_config['config']['train']['config_path'] = tokenizer_path |
| 82 | + # default_single_config['config']['train']['pre_tokenizer'] = ['bert'] |
| 83 | + default_single_config['config']['train']['post_processor'] = 'bert' |
| 84 | + tokenizer_config = FastTokenizerConfig(stage='train', config=default_single_config) |
| 85 | + tokenizer = FastTokenizer(stage='train', config=tokenizer_config) |
| 86 | + data = { |
| 87 | + "data": { |
| 88 | + "train": pd.DataFrame(data={'sentence': ["I have an apple."]}) |
| 89 | + } |
| 90 | + } |
| 91 | + result = tokenizer.process(data) |
| 92 | + result = result['data']['train'].iloc[0] |
| 93 | + assert result['sentence'] == "I have an apple." |
| 94 | + assert result['tokens'] == ['[CLS]', 'I', 'have', 'an', 'app', '##le', '.', '[SEP]'] |
| 95 | + assert result['input_ids'] == [0, 8, 9, 10, 6, 7, 11, 1] |
| 96 | + assert result['attention_mask'] == [1, 1, 1, 1, 1, 1, 1, 1] |
| 97 | + assert result['type_ids'] == [0, 0, 0, 0, 0, 0, 0, 0] |
| 98 | + assert result['special_tokens_mask'] == [1, 0, 0, 0, 0, 0, 0, 1] |
| 99 | + assert result['offsets'] == [(0, 0), (0, 1), (2, 6), (7, 9), (10, 13), (13, 15), (15, 16), (0, 0)] |
| 100 | + assert result['word_ids'] == [None, 0, 1, 2, 3, 3, 4, None] |
| 101 | + assert result['sequence_ids'] == [None, 0, 0, 0, 0, 0, 0, None] |
| 102 | + |
| 103 | + def test_pre_tokenized_tokenizer(self, default_single_config): |
| 104 | + default_single_config = copy.deepcopy(default_single_config) |
| 105 | + tokenizer_path = os.path.join(get_root(), 'tests/data/tokenizer/vocab_tokenizer.json') |
| 106 | + default_single_config['config']['train']['config_path'] = tokenizer_path |
| 107 | + default_single_config['config']['train']['process_data']['is_pretokenized'] = True |
| 108 | + # default_single_config['config']['train']['post_processor'] = 'bert' |
| 109 | + tokenizer_config = FastTokenizerConfig(stage='train', config=default_single_config) |
| 110 | + tokenizer = FastTokenizer(stage='train', config=tokenizer_config) |
| 111 | + data = { |
| 112 | + "data": { |
| 113 | + "train": pd.DataFrame(data={'sentence': [["我", "来自", '山东', '济宁', '.']]}) |
| 114 | + } |
| 115 | + } |
| 116 | + result = tokenizer.process(data) |
| 117 | + result = result['data']['train'].iloc[0] |
| 118 | + assert result['sentence'] == ["我", "来自", '山东', '济宁', '.'] |
| 119 | + assert result['tokens'] == ['我', '[UNK]', '山', '##东', '济宁', '.'] |
| 120 | + assert result['input_ids'] == [12, 4, 15, 17, 18, 11] |
| 121 | + assert result['attention_mask'] == [1, 1, 1, 1, 1, 1] |
| 122 | + assert result['type_ids'] == [0, 0, 0, 0, 0, 0] |
| 123 | + assert result['special_tokens_mask'] == [0, 0, 0, 0, 0, 0] |
| 124 | + assert result['offsets'] == [(0, 1), (0, 2), (0, 1), (1, 2), (0, 2), (0, 1)] |
| 125 | + assert result['word_ids'] == [0, 1, 2, 2, 3, 4] |
| 126 | + assert result['sequence_ids'] == [0, 0, 0, 0, 0, 0] |
| 127 | + |
| 128 | + @pytest.mark.cur |
| 129 | + def test_pair_tokenizer(self, default_single_config): |
| 130 | + default_pair_config = copy.deepcopy(default_single_config) |
| 131 | + tokenizer_path = os.path.join(get_root(), 'tests/data/tokenizer/vocab_tokenizer.json') |
| 132 | + default_pair_config['config']['train']['config_path'] = tokenizer_path |
| 133 | + default_pair_config['config']['train']['data_type'] = 'pair' |
| 134 | + default_pair_config['config']['train']['input_map'] = { |
| 135 | + "sentence_a": "sentence_a", |
| 136 | + "sentence_b": "sentence_b", |
| 137 | + } |
| 138 | + default_pair_config['config']['train']['truncation'] = { |
| 139 | + "max_length": 20, |
| 140 | + "strategy": "longest_first" |
| 141 | + } |
| 142 | + |
| 143 | + tokenizer_config = FastTokenizerConfig(stage='train', config=default_pair_config) |
| 144 | + tokenizer = FastTokenizer(stage='train', config=tokenizer_config) |
| 145 | + data = { |
| 146 | + "data": { |
| 147 | + "train": pd.DataFrame(data={'sentence_a': ["I have an apple."], 'sentence_b': ['an apple.']}) |
| 148 | + } |
| 149 | + } |
| 150 | + result = tokenizer.process(data) |
| 151 | + result = result['data']['train'] |
| 152 | + print(result) |
| 153 | + # assert result['sentence'] == "I have an apple." |
| 154 | + # assert result['tokens'] == ['I', 'have', 'an', 'app', '##le', '.'] |
| 155 | + # assert result['input_ids'] == [8, 9, 10, 6, 7, 11] |
| 156 | + # assert result['attention_mask'] == [1, 1, 1, 1, 1, 1] |
| 157 | + # assert result['type_ids'] == [0, 0, 0, 0, 0, 0] |
| 158 | + # assert result['special_tokens_mask'] == [0, 0, 0, 0, 0, 0] |
| 159 | + # assert result['offsets'] == [(0, 1), (2, 6), (7, 9), (10, 13), (13, 15), (15, 16)] |
| 160 | + # assert result['word_ids'] == [0, 1, 2, 3, 3, 4] |
| 161 | + # assert result['sequence_ids'] == [0, 0, 0, 0, 0, 0] |
0 commit comments