You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: readme.md
-3Lines changed: 0 additions & 3 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -76,7 +76,6 @@ Install with `pip install imodels` (see [here](https://github.com/csinva/imodels
76
76
| Boosted rule set |[🗂️](https://csinva.io/imodels/rule_set/boosted_rules.html), [📄](https://www.sciencedirect.com/science/article/pii/S002200009791504X), [🔗](https://github.com/jaimeps/adaboost-implementation)| Sequentially fits a set of rules with Adaboost |
77
77
| Slipper rule set |[🗂️](https://csinva.io/imodels/rule_set/slipper.html), [📄](https://www.aaai.org/Papers/AAAI/1999/AAAI99-049.pdf)| Sequentially learns a set of rules with SLIPPER |
78
78
| Bayesian rule set |[🗂️](https://csinva.io/imodels/rule_set/brs.html#imodels.rule_set.brs.BayesianRuleSetClassifier), [📄](https://www.jmlr.org/papers/volume18/16-003/16-003.pdf), [🔗](https://github.com/wangtongada/BOA)| Finds concise rule set with Bayesian sampling (slow) |
79
-
| Optimal rule list |[🗂️](https://csinva.io/imodels/rule_list/corels_wrapper.html#imodels.rule_list.corels_wrapper.OptimalRuleListClassifier), [📄](https://www.jmlr.org/papers/volume18/17-716/17-716.pdf), [🔗](https://github.com/corels/pycorels)| Fits rule list using global optimization for sparsity (CORELS) |
80
79
| Bayesian rule list |[🗂️](https://csinva.io/imodels/rule_list/bayesian_rule_list/bayesian_rule_list.html#imodels.rule_list.bayesian_rule_list.bayesian_rule_list.BayesianRuleListClassifier), [📄](https://projecteuclid.org/journals/annals-of-applied-statistics/volume-9/issue-3/Interpretable-classifiers-using-rules-and-Bayesian-analysis--Building-a/10.1214/15-AOAS848.full), [🔗](https://github.com/tmadl/sklearn-expertsys)| Fits compact rule list distribution with Bayesian sampling (slow) |
81
80
| Greedy rule list |[🗂️](https://csinva.io/imodels/rule_list/greedy_rule_list.html), [🔗](https://medium.com/@penggongting/implementing-decision-tree-from-scratch-in-python-c732e7c69aea)| Uses CART to fit a list (only a single path), rather than a tree |
82
81
| OneR rule list |[🗂️](https://csinva.io/imodels/rule_list/one_r.html), [📄](https://link.springer.com/article/10.1023/A:1022631118932)| Fits rule list restricted to only one feature |
@@ -165,7 +164,6 @@ Different models support different machine-learning tasks. Current support for d
165
164
| Boosted rule set |[BoostedRulesClassifier](https://csinva.io/imodels/rule_set/boosted_rules.html#imodels.rule_set.boosted_rules.BoostedRulesClassifier)|[BoostedRulesRegressor](https://csinva.io/imodels/rule_set/boosted_rules.html#imodels.rule_set.boosted_rules.BoostedRulesRegressor)||
166
165
| SLIPPER rule set |[SlipperClassifier](https://csinva.io/imodels/rule_set/slipper.html#imodels.rule_set.slipper.SlipperClassifier)|||
167
166
| Bayesian rule set |[BayesianRuleSetClassifier](https://csinva.io/imodels/rule_set/brs.html#imodels.rule_set.brs.BayesianRuleSetClassifier)|| Fails for large problems |
168
-
| Optimal rule list (CORELS) |[OptimalRuleListClassifier](https://csinva.io/imodels/rule_list/corels_wrapper.html#imodels.rule_list.corels_wrapper.OptimalRuleListClassifier)|| Requires [corels](https://pypi.org/project/corels/), fails for large problems |
169
167
| Bayesian rule list |[BayesianRuleListClassifier](https://csinva.io/imodels/rule_list/bayesian_rule_list/bayesian_rule_list.html#imodels.rule_list.bayesian_rule_list.bayesian_rule_list.BayesianRuleListClassifier)|||
170
168
| Greedy rule list |[GreedyRuleListClassifier](https://csinva.io/imodels/rule_list/greedy_rule_list.html#imodels.rule_list.greedy_rule_list.GreedyRuleListClassifier)|||
171
169
| OneR rule list |[OneRClassifier](https://csinva.io/imodels/rule_list/one_r.html#imodels.rule_list.one_r.OneRClassifier)|||
@@ -282,7 +280,6 @@ MDI+ is a novel feature importance framework, which generalizes the popular mean
The code here heavily derives from the wonderful work of previous projects. We seek to to extract out, unify, and maintain key parts of these projects.
284
282
<ul>
285
-
<li><ahref="https://github.com/corels/pycorels">pycorels</a> - by <ahref="https://github.com/fingoldin">@fingoldin</a> and the <ahref="https://github.com/corels/corels">original CORELS team</a>
286
283
<li><ahref="https://github.com/tmadl/sklearn-expertsys">sklearn-expertsys</a> - by <ahref="https://github.com/tmadl">@tmadl</a> and <ahref="https://github.com/kenben">@kenben</a> based on original code by <ahref="http://lethalletham.com/">Ben Letham</a></li>
287
284
<li><ahref="https://github.com/christophM/rulefit">rulefit</a> - by <ahref="https://github.com/christophM">@christophM</a></li>
288
285
<li><ahref="https://github.com/scikit-learn-contrib/skope-rules">skope-rules</a> - by the <ahref="https://github.com/scikit-learn-contrib/skope-rules/blob/master/AUTHORS.rst">skope-rules team</a> (including <ahref="https://github.com/ngoix">@ngoix</a>, <ahref="https://github.com/floriangardin">@floriangardin</a>, <ahref="https://github.com/datajms">@datajms</a>, <ahref="">Bibi Ndiaye</a>, <ahref="">Ronan Gautier</a>)</li>
0 commit comments