-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patheval.py
311 lines (263 loc) · 12.3 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
import torch
import datetime
import os
import os.path as osp
import random
import numpy as np
import torch.nn.functional as F
from mpr.pmodels import MPRModel, StandardPoolingModel, FlatModel, AverageMLP, GINModel
from mpr.utils import OneHotDegree
from sklearn.model_selection import StratifiedKFold
from torch_geometric.datasets import TUDataset
parser = argparse.ArgumentParser()
# Model
parser.add_argument('--mode', type=str, choices=['mpr', 'diffpool', 'mincut',
'flat', 'gin', 'avgmlp'])
parser.add_argument('--pagerank_pooling', type=bool, default=True)
parser.add_argument('--cluster_dims', type=int, nargs='+')
parser.add_argument('--hidden_dims', type=int, nargs='+')
parser.add_argument('--interval_overlap', type=float, default=0.1)
parser.add_argument('--pooling_ratio', type=float, default=0.25)
parser.add_argument('--std_hidden_dim', type=int, default=32)
# Optimization
parser.add_argument('--dataset', type=str, default='DD',
choices=['COLLAB', 'DD', 'PROTEINS', 'REDDIT-BINARY',
'MUTAG', 'NCI1', 'IMDB-BINARY', 'IMDB-MULTI',
'REDDIT-MULTI-5K'])
parser.add_argument('--fold', type=int, choices=range(11), default=0)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--lrate', type=float, default=1e-3)
parser.add_argument('--lrate_anneal_coef', type=float, default=0)
parser.add_argument('--sim_batch_size', type=int, default=32)
parser.add_argument('--log_dir', type=str, default='./logs/')
def get_graph_classification_dataset(dataset):
node_transform = None
if dataset in ['COLLAB', 'REDDIT-BINARY', 'IMDB-BINARY', 'IMDB-MULTI',
'REDDIT-MULTI-5K']:
node_transform = OneHotDegree(max_degree=64)
path = osp.join(osp.dirname('./graph_datasets/'), dataset)
dataset = TUDataset(path, name=dataset, pre_transform=node_transform)
return dataset
def evaluate_loss(y_pred, target):
loss = F.cross_entropy(y_pred, target)
return loss
def update_lrate(args, optimizer, epoch):
if args.lrate_anneal_coef and epoch >= args.epochs // 2:
optimizer.param_groups[0]['lr'] = (optimizer.param_groups[0]['lr'] *
args.lrate_anneal_coef)
def select_subset(this_dataset, indices):
subset = this_dataset[torch.LongTensor(indices)]
y = np.concatenate([d.y for d in subset])
return subset, y
def run():
args = parser.parse_args()
log_name = '%s_%s_%d_%s_%d_%.4f_%.2f' % (str(args.cluster_dims),
str(args.hidden_dims),
args.interval_overlap,
args.dataset,
args.epochs,
args.lrate,
args.lrate_anneal_coef)
# Load dataset
dataset = get_graph_classification_dataset(args.dataset)
print(args.dataset, dataset[0],
dataset.num_classes, 'classes',
dataset.num_features, 'features')
# Determine runtime device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Prepare log file
log_name += '_' + str(datetime.datetime.now()) + '.txt'
if not osp.exists(args.log_dir):
os.makedirs(args.log_dir)
f = open(osp.join(args.log_dir, log_name), 'w')
# Set seeds (need to maintain same splits and shuffling across models/runs)
torch.manual_seed(0)
np.random.seed(0)
random.seed(0)
# 10-fold cross-validation
kf = StratifiedKFold(n_splits=10, shuffle=False)
curr_fold = 0
test_accs = []
for train_val_idxs, test_idxs in kf.split(np.zeros(len(dataset.data.y)), dataset.data.y):
print("Train val idx", len(train_val_idxs))
print("Test idx", len(test_idxs))
curr_fold += 1
if args.fold and curr_fold != args.fold:
continue
s = '>>> 10-fold cross-validation --- fold %d' % curr_fold
print(s)
f.write(s + '\n')
# Split into train-val and test
train_val_dataset, train_val_y = select_subset(dataset, train_val_idxs)
test_dataset, test_y = select_subset(dataset, test_idxs)
# Split first set into train and val
kf2 = StratifiedKFold(n_splits=9, shuffle=False)
for train_idxs, val_idxs in kf2.split(np.zeros(len(train_val_y)), train_val_y):
train_dataset, train_y = select_subset(train_val_dataset, train_idxs)
val_dataset, val_y = select_subset(train_val_dataset, val_idxs)
break
# Shuffle the training data
shuffled_idx = torch.randperm(len(train_dataset))
train_dataset, train_y = select_subset(train_dataset, shuffled_idx)
if args.mode == 'mpr':
model = MPRModel(dataset, args.hidden_dims, args.cluster_dims, args.interval_overlap).to(device)
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lrate)
elif args.mode == 'flat':
model = FlatModel(dataset).to(device)
print(model)
f.write(str(model) + '\n')
optimizer = torch.optim.Adam(model.parameters(), lr=args.lrate)
elif args.mode == 'gin':
model = GINModel(dataset, hidden_dim=args.std_hidden_dim).to(device)
print(model)
f.write(str(model) + '\n')
optimizer = torch.optim.Adam(model.parameters(), lr=args.lrate)
elif args.mode == 'avgmlp':
model = AverageMLP(dataset).to(device)
print(model)
f.write(str(model) + '\n')
optimizer = torch.optim.Adam(model.parameters(), lr=args.lrate)
else:
model = StandardPoolingModel(dataset, mode=args.mode,
hidden_dim=args.std_hidden_dim).to(device)
print(model)
f.write(str(model) + '\n')
optimizer = torch.optim.Adam(model.parameters(), lr=args.lrate)
max_val_acc = 0.0
for epoch in range(args.epochs):
# Train model
train_loss = 0
if args.mode in ['mpr', 'flat', 'gin', 'avgmlp']:
model.train()
else:
train_loss1 = 0
train_loss2 = 0
model.train()
optimizer.zero_grad()
for i, data in enumerate(train_dataset):
data = data.to(device)
if args.mode == 'mpr':
y_pred = model(data.x, data.edge_index, args.pagerank_pooling)
y_pred = y_pred.unsqueeze(0)
elif args.mode in ['flat', 'gin', 'avgmlp']:
y_pred = model(data.x, data.edge_index)
else:
y_pred, loss1, loss2 = model(data.x, data.edge_index)
loss = evaluate_loss(y_pred, data.y)
train_loss += loss
if args.mode == 'mpr':
(loss / args.sim_batch_size).backward()
if i % args.sim_batch_size == 0:
optimizer.step()
optimizer.zero_grad()
elif args.mode in ['flat', 'gin', 'avgmlp']:
loss.backward()
optimizer.step()
optimizer.zero_grad()
else:
train_loss1 += loss1
train_loss2 += loss2
total_loss = loss + loss1 + loss2
total_loss.backward()
optimizer.step()
optimizer.zero_grad()
train_loss /= len(train_dataset)
if args.mode in ['diffpool', 'mincut']:
train_loss1 /= len(train_dataset)
train_loss2 /= len(train_dataset)
# Run validation set
val_acc = 0
val_loss = 0
if args.mode in ['mpr', 'flat', 'gin', 'avgmlp']:
model.eval()
val_loss = 0
else:
model.eval()
val_loss1 = 0
val_loss2 = 0
with torch.no_grad():
for _, data in enumerate(val_dataset):
data = data.to(device)
if args.mode == 'mpr':
y_pred = model(data.x, data.edge_index, args.pagerank_pooling)
y_pred = y_pred.unsqueeze(0)
elif args.mode in ['flat', 'gin', 'avgmlp']:
y_pred = model(data.x, data.edge_index)
else:
y_pred, loss1, loss2 = model(data.x, data.edge_index)
loss = evaluate_loss(y_pred, data.y).detach().cpu().numpy()
val_loss += loss
if args.mode in ['diffpool', 'mincut']:
val_loss1 += loss1
val_loss2 += loss2
val_acc += y_pred.max(1)[1].eq(data.y)
val_acc = float(val_acc) / len(val_dataset)
val_loss /= len(val_dataset)
if args.mode in ['mpr', 'flat', 'gin', 'avgmlp']:
s = ('Epoch %d - train loss %.4f, val loss %.4f, val accuracy %.4f' %
(epoch, train_loss, val_loss, val_acc))
else:
val_loss1 /= len(dataset)
val_loss2 /= len(dataset)
s = (('Epoch %d - train loss %.4f, loss1 %.4f, loss2 %.4f, '
'val loss %.4f, loss1 %.4f, loss2 %.4f, val accuracy %.4f') %
(epoch,
train_loss, train_loss1, train_loss2,
val_loss, val_loss1, val_loss2,
val_acc))
print(s)
f.write(s + '\n')
if val_acc > max_val_acc:
s = 'New best validation accuracy at epoch %d: %.4f' % (epoch, val_acc)
max_val_acc = val_acc
print(s)
f.write(s + '\n')
# Run test set
test_acc = 0
test_loss = 0
if args.mode in ['mpr', 'flat', 'gin', 'avgmlp']:
model.eval()
else:
model.eval()
test_loss1 = 0
test_loss2 = 0
for _, data in enumerate(test_dataset):
data = data.to(device)
if args.mode == 'mpr':
y_pred = model(data.x, data.edge_index, args.pagerank_pooling)
y_pred = y_pred.unsqueeze(0)
elif args.mode in ['flat', 'gin', 'avgmlp']:
y_pred = model(data.x, data.edge_index)
else:
y_pred, loss1, loss2 = model(data.x, data.edge_index)
loss = evaluate_loss(y_pred, data.y).detach().cpu().numpy()
test_loss += loss
if args.mode in ['diffpool', 'mincut']:
test_loss1 += loss1
test_loss2 += loss2
test_acc += y_pred.max(1)[1].eq(data.y)
test_acc = float(test_acc) / len(test_dataset)
test_loss /= len(test_dataset)
if args.mode in ['mpr', 'flat', 'gin', 'avgmlp']:
s = ('Epoch %d - test loss %.4f, test accuracy %.4f' %
(epoch, test_loss, test_acc))
else:
test_loss1 /= len(dataset)
test_loss2 /= len(dataset)
s = ((('Epoch %d - test loss %.4f, loss1 %.4f, loss2 %.4f,'
'accuracy %.4f') %
(epoch, test_loss, test_loss1, test_loss2, test_acc)))
print(s)
f.write(s + '\n')
update_lrate(args, optimizer, epoch)
test_accs.append(test_acc)
s = 'Test accuracies: %s, %.4f +- %.4f' % (str(test_accs),
np.mean(np.array(test_accs)),
np.std(np.array(test_accs)))
print(s)
f.write(s + '\n')
f.close()
if __name__ == "__main__":
run()