-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
StreamToTableJoinScalaIntegrationTest.scala
178 lines (156 loc) · 7.79 KB
/
StreamToTableJoinScalaIntegrationTest.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams
import java.util.Properties
import org.apache.kafka.common.serialization._
import org.apache.kafka.streams.scala.StreamsBuilder
import org.apache.kafka.streams.scala.kstream.{KStream, KTable}
import org.apache.kafka.streams.{KeyValue, StreamsConfig, TopologyTestDriver}
import org.apache.kafka.test.TestUtils
import org.assertj.core.api.Assertions.assertThat
import org.junit._
import org.scalatestplus.junit.AssertionsForJUnit
/**
* End-to-end integration test that demonstrates how to perform a join between a KStream and a
* KTable (think: KStream.leftJoin(KTable)), i.e. an example of a stateful computation.
*
* See StreamToTableJoinIntegrationTest for the equivalent Java example.
*
* Note: We intentionally use JUnit4 (wrapped by ScalaTest) for implementing this Scala integration
* test so it is easier to compare this Scala code with the equivalent Java code at
* StreamToTableJoinIntegrationTest. One difference is that, to simplify the Scala/Junit integration, we
* switched from BeforeClass (which must be `static`) to Before as well as from @ClassRule (which
* must be `static` and `public`) to a workaround combination of `@Rule def` and a `private val`.
*/
class StreamToTableJoinScalaIntegrationTest extends AssertionsForJUnit {
import org.apache.kafka.streams.scala.ImplicitConversions._
import org.apache.kafka.streams.scala.serialization.Serdes._
private val userClicksTopic = "user-clicks"
private val userRegionsTopic = "user-regions"
private val outputTopic = "output-topic"
@Test
def shouldCountClicksPerRegion(): Unit = {
// Input 1: Clicks per user (multiple records allowed per user).
val userClicks: Seq[KeyValue[String, Long]] = Seq(
("alice", 13L),
("bob", 4L),
("chao", 25L),
("bob", 19L),
("dave", 56L),
("eve", 78L),
("alice", 40L),
("fang", 99L)
)
// Input 2: Region per user (multiple records allowed per user).
val userRegions: Seq[KeyValue[String, String]] = Seq(
("alice", "asia"), /* Alice lived in Asia originally... */
("bob", "americas"),
("chao", "asia"),
("dave", "europe"),
("alice", "europe"), /* ...but moved to Europe some time later. */
("eve", "americas"),
("fang", "asia")
)
val expectedClicksPerRegion: Map[String, Long] = Map(
("americas", 101L),
("europe", 109L),
("asia", 124L)
)
//
// Step 1: Configure and start the processor topology.
//
val streamsConfiguration: Properties = {
val p = new Properties()
p.put(StreamsConfig.APPLICATION_ID_CONFIG, "stream-table-join-scala-integration-test")
p.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "dummy config")
// Use a temporary directory for storing state, which will be automatically removed after the test.
p.put(StreamsConfig.STATE_DIR_CONFIG, TestUtils.tempDirectory.getAbsolutePath)
p
}
val builder = new StreamsBuilder
// This KStream contains information such as "alice" -> 13L.
//
// Because this is a KStream ("record stream"), multiple records for the same user will be
// considered as separate click-count events, each of which will be added to the total count.
val userClicksStream: KStream[String, Long] = builder.stream[String, Long](userClicksTopic)
// This KTable contains information such as "alice" -> "europe".
//
// Because this is a KTable ("changelog stream"), only the latest value (here: region) for a
// record key will be considered at the time when a new user-click record (see above) is
// received for the `leftJoin` below. Any previous region values are being considered out of
// date. This behavior is quite different to the KStream for user clicks above.
//
// For example, the user "alice" will be considered to live in "europe" (although originally she
// lived in "asia") because, at the time her first user-click record is being received and
// subsequently processed in the `leftJoin`, the latest region update for "alice" is "europe"
// (which overrides her previous region value of "asia").
val userRegionsTable: KTable[String, String] = builder.table[String, String](userRegionsTopic)
// Compute the number of clicks per region, e.g. "europe" -> 13L.
//
// The resulting KTable is continuously being updated as new data records are arriving in the
// input KStream `userClicksStream` and input KTable `userRegionsTable`.
val userClicksJoinRegion: KStream[String, (String, Long)] = userClicksStream
// Join the stream against the table.
//
// Null values possible: In general, null values are possible for region (i.e. the value of
// the KTable we are joining against) so we must guard against that (here: by setting the
// fallback region "UNKNOWN"). In this specific example this is not really needed because
// we know, based on the test setup, that all users have appropriate region entries at the
// time we perform the join.
.leftJoin(userRegionsTable)((clicks, region) => (if (region == null) "UNKNOWN" else region, clicks))
val clicksByRegion: KStream[String, Long] = userClicksJoinRegion
.map { case (_, (region, clicks)) => (region, clicks) }
val clicksPerRegion: KTable[String, Long] = clicksByRegion
// Compute the total per region by summing the individual click counts per region.
.groupByKey
.reduce(_ + _)
// Write the (continuously updating) results to the output topic.
clicksPerRegion.toStream.to(outputTopic)
val topologyTestDriver = new TopologyTestDriver(builder.build(), streamsConfiguration)
try {
//
// Step 2: Setup input and output topics.
//
import scala.jdk.CollectionConverters._
val regionInput = topologyTestDriver.createInputTopic(userRegionsTopic,
new StringSerializer,
new StringSerializer)
val clickInput = topologyTestDriver.createInputTopic(userClicksTopic,
new StringSerializer,
new LongSerializer)
val output = topologyTestDriver.createOutputTopic(outputTopic,
new StringDeserializer,
new LongDeserializer)
//
// Step 3: Publish user-region information.
//
// To keep this code example simple and easier to understand/reason about, we publish all
// user-region records before any user-click records (cf. step 3). In practice though,
// data records would typically be arriving concurrently in both input streams/topics.
regionInput.pipeKeyValueList(userRegions.asJava)
//
// Step 4: Publish some user click events.
//
clickInput.pipeKeyValueList(userClicks.map(kv => new KeyValue(kv.key, kv.value.asInstanceOf[java.lang.Long])).asJava)
//
// Step 5: Verify the application's output data.
//
assertThat(output.readKeyValuesToMap()).isEqualTo(expectedClicksPerRegion.asJava)
} finally {
topologyTestDriver.close()
}
}
}