diff --git a/README.rst b/README.rst index 24bdc47..fc703e6 100644 --- a/README.rst +++ b/README.rst @@ -7,29 +7,29 @@ bandicoot :alt: Version .. image:: https://img.shields.io/pypi/l/bandicoot.svg - :target: https://github.com/yvesalexandre/bandicoot/blob/master/LICENSE + :target: https://github.com/computationalprivacy/bandicoot/blob/master/LICENSE :alt: MIT License .. image:: https://img.shields.io/pypi/dm/bandicoot.svg :target: https://pypi.python.org/pypi/bandicoot :alt: PyPI downloads -.. image:: https://img.shields.io/travis/yvesalexandre/bandicoot.svg - :target: https://travis-ci.org/yvesalexandre/bandicoot +.. image:: https://img.shields.io/travis/computationalprivacy/bandicoot.svg + :target: https://travis-ci.org/computationalprivacy/bandicoot :alt: Continuous integration .. begin **bandicoot** (http://bandicoot.mit.edu) is Python toolbox to analyze mobile phone metadata. It provides a complete, easy-to-use environment for data-scientist to analyze mobile phone metadata. With only a few lines of code, load your datasets, visualize the data, perform analyses, and export the results. -.. image:: https://raw.githubusercontent.com/yvesalexandre/bandicoot/master/docs/_static/bandicoot-dashboard.png +.. image:: https://raw.githubusercontent.com/computationalprivacy/bandicoot/master/docs/_static/bandicoot-dashboard.png :alt: Bandicoot interactive visualization --------------- Where to get it --------------- -The source code is currently hosted on Github at https://github.com/yvesalexandre/bandicoot. Binary installers for the latest released version are available at the Python package index: +The source code is currently hosted on Github at https://github.com/computationalprivacy/bandicoot. Binary installers for the latest released version are available at the Python package index: http://pypi.python.org/pypi/bandicoot/ diff --git a/docs/quickstart.rst b/docs/quickstart.rst index ce68d8f..6cea209 100644 --- a/docs/quickstart.rst +++ b/docs/quickstart.rst @@ -8,7 +8,7 @@ The easiest way to install it is using PyPI:: pip install bandicoot -Alternatively, you can download it from `here `_. Once unzipped you can either import it ``import bandicoot as bc`` or install it:: +Alternatively, you can download it from `here `_. Once unzipped you can either import it ``import bandicoot as bc`` or install it:: python setup.py install @@ -242,5 +242,5 @@ The following code will load all the users in one directory, compute the indicat bc.to_csv(indicators, 'bandicoot_indicators_full.csv') -The full pipeline file is available `here `_. A parallel version using `MultiProcessing `_ is available `here `_. +The full pipeline file is available `here `_. A parallel version using `MultiProcessing `_ is available `here `_. diff --git a/setup.py b/setup.py index 4637bcb..c38d2e3 100644 --- a/setup.py +++ b/setup.py @@ -9,8 +9,8 @@ name='bandicoot', author='Yves-Alexandre de Montjoye', author_email='yvesalexandre@demontjoye.com', - version="0.5.3", - url="https://github.com/yvesalexandre/bandicoot", + version="0.5.4", + url="https://github.com/computationalprivacy/bandicoot", license="MIT", packages=[ 'bandicoot',