-
Notifications
You must be signed in to change notification settings - Fork 5
/
defaults.py
699 lines (573 loc) · 28.4 KB
/
defaults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import os
from yacs.config import CfgNode as CN
# -----------------------------------------------------------------------------
# Convention about Training / Test specific parameters
# -----------------------------------------------------------------------------
# Whenever an argument can be either used for training or for testing, the
# corresponding name will be post-fixed by a _TRAIN for a training parameter,
# or _TEST for a test-specific parameter.
# For example, the maximum image side during training will be
# INPUT.MAX_SIZE_TRAIN, while for testing it will be
# INPUT.MAX_SIZE_TEST
# -----------------------------------------------------------------------------
# Config definition
# -----------------------------------------------------------------------------
_C = CN()
_C.MODEL = CN()
_C.MODEL.FLIP_AUG = False
_C.MODEL.RPN_ONLY = False
_C.MODEL.MASK_ON = False
_C.MODEL.RETINANET_ON = False
_C.MODEL.KEYPOINT_ON = False
_C.MODEL.ATTRIBUTE_ON = False
_C.MODEL.RELATION_ON = False
_C.MODEL.DEVICE = "cuda"
_C.MODEL.META_ARCHITECTURE = "GeneralizedRCNN"
_C.MODEL.CLS_AGNOSTIC_BBOX_REG = False
# If the WEIGHT starts with a catalog://, like :R-50, the code will look for
# the path in paths_catalog. Else, it will use it as the specified absolute
# path
_C.MODEL.WEIGHT = ""
# checkpoint of detector, for relation prediction
_C.MODEL.PRETRAINED_DETECTOR_CKPT = ""
_C.MODEL.STL_EVAL = False # whether to compute STL instead of general evaluation
_C.MODEL.STL_EVAL_GENERAL = False # whether to set bg labeling prob to one. Should has always been `True` actually.
_C.MODEL.STL_TRAIN = False # whether to conduct STL training
_C.MODEL.STL_TRAIN_NORM = False # whether to normalize soft label (exclude background -> normalized prob. of class 1-50 with the sum)
_C.MODEL.STL_TRAIN_LABEL_PATH = '' # path to predicted soft label. E.g. `output/motif-precls-exmp/inference/VG_stanford_filtered_with_attribute_test/train_eval_results.pytorch`.
_C.MODEL.STL_TRAIN_LOSS_ALPHA = 1.0 # the factor for stl loss
_C.MODEL.STL_EVAL_AVG_VAL_SET = False # whether averaging labeling probability of training set with that of validation set. Default False
_C.MODEL.STL_EVAL_ZERO_OUT_NAN = False # whether to zero out nan values and make final factored labeling prob 0
_C.MODEL.VIS_MODE = False # Can be True ONLY WHEN using jupyter notebook to visualize results
_C.MODEL.BG_SOFT_LOSS = False # whether to use soft cross entropy loss for background triplets
_C.MODEL.BALANCED_NORM = False # Whether to enable training-time balanced_norm
_C.MODEL.BALANCED_NORM_NORMALIZED_PROBS = False # whether to normalilzed probabilities after applying balanced norm. Default: `True`.
_C.MODEL.BALANCED_NORM_TRAIN_GX = False # Also train against g(x) in addition to f(x), against the training set p(s|x)
_C.MODEL.BALANCED_NORM_TRAIN_GX_LOSS_ALPHA = 1.0
_C.MODEL.BALANCED_NORM_LEARNABLE = False # Learn labeling probability
_C.MODEL.BALANCED_NORM_WITH_GRADIENT = False
_C.MODEL.BALANCED_NORM_AS_SOFT_LABEL = False
_C.MODEL.BALANCED_NORM_AS_SOFT_LABEL_SLL = False
_C.MODEL.BALANCED_NORM_AS_SOFT_LABEL_MLL = False
_C.MODEL.BALANCED_NORM_AS_SOFT_LABEL_NORMALIZE_LB = False
_C.MODEL.BALANCED_NORM_USE_BCELOSS = False
_C.MODEL.BALANCED_NORM_USE_MSELOSS = False
_C.MODEL.TRAIN_AVG_BELIEF_TO_ONE = False
_C.MODEL.TRAIN_AVG_BELIEF_TO_ONE_FACTOR = 1.0
_C.MODEL.TRAIN_AVG_BELIEF_TO_ONE_ONLY_THIS_LOSS = False
_C.MODEL.BALANCED_NORM_TEST_ONLY = False
# Use pre-computed (fixed) labeling probability instead of the dynamically estimated one
_C.MODEL.BALANCED_NORM_FIXED = False
_C.MODEL.BALANCED_NORM_FIXED_NORMALIZED = False
_C.MODEL.BALANCED_NORM_FIXED_MSELOSS = False
_C.MODEL.PRECOMPUTED_BALANCED_NORM_PATH = '' # e.g. 'output/motif-precls-exmp/inference/VG_stanford_filtered_with_attribute_test/train_labeling_prob.pt'
_C.MODEL.PCPL_CENTER_LOSS = False # Whether to apply PCPL with Center Loss as described in Yan et al. "PCPL: Predicate-Correlation Perception Learning for Unbiased Scene Graph Generation"
_C.MODEL.CENTER_LOSS_LR = 0.01
_C.MODEL.CENTER_LOSS_ALPHA = 0.5
_C.MODEL.CENTER_LOSS_LAMBDA = 0.03
# -----------------------------------------------------------------------------
# INPUT
# -----------------------------------------------------------------------------
_C.INPUT = CN()
# Size of the smallest side of the image during training
_C.INPUT.MIN_SIZE_TRAIN = (800,) # (800,)
# Maximum size of the side of the image during training
_C.INPUT.MAX_SIZE_TRAIN = 1333
# Size of the smallest side of the image during testing
_C.INPUT.MIN_SIZE_TEST = 800
# Maximum size of the side of the image during testing
_C.INPUT.MAX_SIZE_TEST = 1333
# Values to be used for image normalization
_C.INPUT.PIXEL_MEAN = [102.9801, 115.9465, 122.7717]
# Values to be used for image normalization
_C.INPUT.PIXEL_STD = [1., 1., 1.]
# Convert image to BGR format (for Caffe2 models), in range 0-255
_C.INPUT.TO_BGR255 = True
# Image ColorJitter
_C.INPUT.BRIGHTNESS = 0.0
_C.INPUT.CONTRAST = 0.0
_C.INPUT.SATURATION = 0.0
_C.INPUT.HUE = 0.0
_C.INPUT.VERTICAL_FLIP_PROB_TRAIN = 0.0
# -----------------------------------------------------------------------------
# Dataset
# -----------------------------------------------------------------------------
_C.DATASETS = CN()
# List of the dataset names for training, as present in paths_catalog.py
_C.DATASETS.TRAIN = ()
# List of the dataset names for val, as present in paths_catalog.py
# Note that except dataset names, all remaining val configs reuse those of test
_C.DATASETS.VAL = ()
# List of the dataset names for testing, as present in paths_catalog.py
_C.DATASETS.TEST = ()
# -----------------------------------------------------------------------------
# DataLoader
# -----------------------------------------------------------------------------
_C.DATALOADER = CN()
# Number of data loading threads
_C.DATALOADER.NUM_WORKERS = 4
# If > 0, this enforces that each collated batch should have a size divisible
# by SIZE_DIVISIBILITY
_C.DATALOADER.SIZE_DIVISIBILITY = 0
# If True, each batch should contain only images for which the aspect ratio
# is compatible. This groups portrait images together, and landscape images
# are not batched with portrait images.
_C.DATALOADER.ASPECT_RATIO_GROUPING = True
# ---------------------------------------------------------------------------- #
# Backbone options
# ---------------------------------------------------------------------------- #
_C.MODEL.BACKBONE = CN()
# The backbone conv body to use
# The string must match a function that is imported in modeling.model_builder
# (e.g., 'FPN.add_fpn_ResNet101_conv5_body' to specify a ResNet-101-FPN
# backbone)
_C.MODEL.BACKBONE.CONV_BODY = "R-50-C4"
# Add StopGrad at a specified stage so the bottom layers are frozen
_C.MODEL.BACKBONE.FREEZE_CONV_BODY_AT = 2
# ---------------------------------------------------------------------------- #
# FPN options
# ---------------------------------------------------------------------------- #
_C.MODEL.FPN = CN()
_C.MODEL.FPN.USE_GN = False
_C.MODEL.FPN.USE_RELU = False
# ---------------------------------------------------------------------------- #
# Group Norm options
# ---------------------------------------------------------------------------- #
_C.MODEL.GROUP_NORM = CN()
# Number of dimensions per group in GroupNorm (-1 if using NUM_GROUPS)
_C.MODEL.GROUP_NORM.DIM_PER_GP = -1
# Number of groups in GroupNorm (-1 if using DIM_PER_GP)
_C.MODEL.GROUP_NORM.NUM_GROUPS = 32
# GroupNorm's small constant in the denominator
_C.MODEL.GROUP_NORM.EPSILON = 1e-5
# ---------------------------------------------------------------------------- #
# RPN options
# ---------------------------------------------------------------------------- #
_C.MODEL.RPN = CN()
_C.MODEL.RPN.USE_FPN = False
_C.MODEL.RPN.RPN_MID_CHANNEL = 512
# Base RPN anchor sizes given in absolute pixels w.r.t. the scaled network input
_C.MODEL.RPN.ANCHOR_SIZES = (32, 64, 128, 256, 512)
# Stride of the feature map that RPN is attached.
# For FPN, number of strides should match number of scales
_C.MODEL.RPN.ANCHOR_STRIDE = (16,)
# RPN anchor aspect ratios
_C.MODEL.RPN.ASPECT_RATIOS = (0.5, 1.0, 2.0)
# Remove RPN anchors that go outside the image by RPN_STRADDLE_THRESH pixels
# Set to -1 or a large value, e.g. 100000, to disable pruning anchors
_C.MODEL.RPN.STRADDLE_THRESH = 0
# Minimum overlap required between an anchor and ground-truth box for the
# (anchor, gt box) pair to be a positive example (IoU >= FG_IOU_THRESHOLD
# ==> positive RPN example)
_C.MODEL.RPN.FG_IOU_THRESHOLD = 0.7
# Maximum overlap allowed between an anchor and ground-truth box for the
# (anchor, gt box) pair to be a negative examples (IoU < BG_IOU_THRESHOLD
# ==> negative RPN example)
_C.MODEL.RPN.BG_IOU_THRESHOLD = 0.3
# Total number of RPN examples per image
_C.MODEL.RPN.BATCH_SIZE_PER_IMAGE = 256
# Target fraction of foreground (positive) examples per RPN minibatch
_C.MODEL.RPN.POSITIVE_FRACTION = 0.5
# Number of top scoring RPN proposals to keep before applying NMS
# When FPN is used, this is *per FPN level* (not total)
_C.MODEL.RPN.PRE_NMS_TOP_N_TRAIN = 12000
_C.MODEL.RPN.PRE_NMS_TOP_N_TEST = 6000
# Number of top scoring RPN proposals to keep after applying NMS
_C.MODEL.RPN.POST_NMS_TOP_N_TRAIN = 2000
_C.MODEL.RPN.POST_NMS_TOP_N_TEST = 1000
# NMS threshold used on RPN proposals
_C.MODEL.RPN.NMS_THRESH = 0.7
# Proposal height and width both need to be greater than RPN_MIN_SIZE
# (a the scale used during training or inference)
_C.MODEL.RPN.MIN_SIZE = 0
# Number of top scoring RPN proposals to keep after combining proposals from
# all FPN levels
_C.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN = 2000
_C.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST = 2000
# Apply the post NMS per batch (default) or per image during training
# (default is True to be consistent with Detectron, see Issue #672)
_C.MODEL.RPN.FPN_POST_NMS_PER_BATCH = True
# Custom rpn head, empty to use default conv or separable conv
_C.MODEL.RPN.RPN_HEAD = "SingleConvRPNHead"
# ---------------------------------------------------------------------------- #
# ROI HEADS options
# ---------------------------------------------------------------------------- #
_C.MODEL.ROI_HEADS = CN()
_C.MODEL.ROI_HEADS.USE_FPN = False
# Overlap threshold for an RoI to be considered foreground (if >= FG_IOU_THRESHOLD)
_C.MODEL.ROI_HEADS.FG_IOU_THRESHOLD = 0.5
# Overlap threshold for an RoI to be considered background
# (class = 0 if overlap in [0, BG_IOU_THRESHOLD))
_C.MODEL.ROI_HEADS.BG_IOU_THRESHOLD = 0.3
# Default weights on (dx, dy, dw, dh) for normalizing bbox regression targets
# These are empirically chosen to approximately lead to unit variance targets
_C.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS = (10., 10., 5., 5.)
# RoI minibatch size *per image* (number of regions of interest [ROIs])
# Total number of RoIs per training minibatch =
# TRAIN.BATCH_SIZE_PER_IM * TRAIN.IMS_PER_BATCH
# E.g., a common configuration is: 512 * 2 * 8 = 8192
_C.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 256
# Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0)
_C.MODEL.ROI_HEADS.POSITIVE_FRACTION = 0.25
# Only used on test mode
# Minimum score threshold (assuming scores in a [0, 1] range); a value chosen to
# balance obtaining high recall with not having too many low precision
# detections that will slow down inference post processing steps (like NMS)
_C.MODEL.ROI_HEADS.SCORE_THRESH = 0.01
# Overlap threshold used for non-maximum suppression (suppress boxes with
# IoU >= this threshold)
_C.MODEL.ROI_HEADS.NMS = 0.3
_C.MODEL.ROI_HEADS.POST_NMS_PER_CLS_TOPN = 300
# Remove duplicated assigned labels for a single bbox in nms
_C.MODEL.ROI_HEADS.NMS_FILTER_DUPLICATES = False
# Maximum number of detections to return per image (100 is based on the limit
# established for the COCO dataset)
_C.MODEL.ROI_HEADS.DETECTIONS_PER_IMG = 256
_C.MODEL.ROI_BOX_HEAD = CN()
_C.MODEL.ROI_BOX_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor"
_C.MODEL.ROI_BOX_HEAD.PREDICTOR = "FastRCNNPredictor"
_C.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION = 14
_C.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO = 0
_C.MODEL.ROI_BOX_HEAD.POOLER_SCALES = (1.0 / 16,)
_C.MODEL.ROI_BOX_HEAD.NUM_CLASSES = 81
# Hidden layer dimension when using an MLP for the RoI box head
_C.MODEL.ROI_BOX_HEAD.MLP_HEAD_DIM = 2048
# GN
_C.MODEL.ROI_BOX_HEAD.USE_GN = False
# Dilation
_C.MODEL.ROI_BOX_HEAD.DILATION = 1
_C.MODEL.ROI_BOX_HEAD.CONV_HEAD_DIM = 256
_C.MODEL.ROI_BOX_HEAD.NUM_STACKED_CONVS = 4
_C.MODEL.ROI_ATTRIBUTE_HEAD = CN()
_C.MODEL.ROI_ATTRIBUTE_HEAD.FEATURE_EXTRACTOR = "FPN2MLPFeatureExtractor"
_C.MODEL.ROI_ATTRIBUTE_HEAD.PREDICTOR = "FPNPredictor"
_C.MODEL.ROI_ATTRIBUTE_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True
# Add attributes to each box
_C.MODEL.ROI_ATTRIBUTE_HEAD.USE_BINARY_LOSS = True
_C.MODEL.ROI_ATTRIBUTE_HEAD.ATTRIBUTE_LOSS_WEIGHT = 0.1
_C.MODEL.ROI_ATTRIBUTE_HEAD.NUM_ATTRIBUTES = 201
_C.MODEL.ROI_ATTRIBUTE_HEAD.MAX_ATTRIBUTES = 10 # max number of attribute per bbox
_C.MODEL.ROI_ATTRIBUTE_HEAD.ATTRIBUTE_BGFG_SAMPLE = True
_C.MODEL.ROI_ATTRIBUTE_HEAD.ATTRIBUTE_BGFG_RATIO = 3
_C.MODEL.ROI_ATTRIBUTE_HEAD.POS_WEIGHT = 5.0
_C.MODEL.ROI_MASK_HEAD = CN()
_C.MODEL.ROI_MASK_HEAD.FEATURE_EXTRACTOR = "ResNet50Conv5ROIFeatureExtractor"
_C.MODEL.ROI_MASK_HEAD.PREDICTOR = "MaskRCNNC4Predictor"
_C.MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION = 14
_C.MODEL.ROI_MASK_HEAD.POOLER_SAMPLING_RATIO = 0
_C.MODEL.ROI_MASK_HEAD.POOLER_SCALES = (1.0 / 16,)
_C.MODEL.ROI_MASK_HEAD.MLP_HEAD_DIM = 1024
_C.MODEL.ROI_MASK_HEAD.CONV_LAYERS = (256, 256, 256, 256)
_C.MODEL.ROI_MASK_HEAD.RESOLUTION = 14
_C.MODEL.ROI_MASK_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True
# Whether or not resize and translate masks to the input image.
_C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS = False
_C.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS_THRESHOLD = 0.5
# Dilation
_C.MODEL.ROI_MASK_HEAD.DILATION = 1
# GN
_C.MODEL.ROI_MASK_HEAD.USE_GN = False
_C.MODEL.ROI_KEYPOINT_HEAD = CN()
_C.MODEL.ROI_KEYPOINT_HEAD.FEATURE_EXTRACTOR = "KeypointRCNNFeatureExtractor"
_C.MODEL.ROI_KEYPOINT_HEAD.PREDICTOR = "KeypointRCNNPredictor"
_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_RESOLUTION = 14
_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_SAMPLING_RATIO = 0
_C.MODEL.ROI_KEYPOINT_HEAD.POOLER_SCALES = (1.0 / 16,)
_C.MODEL.ROI_KEYPOINT_HEAD.MLP_HEAD_DIM = 1024
_C.MODEL.ROI_KEYPOINT_HEAD.CONV_LAYERS = tuple(512 for _ in range(8))
_C.MODEL.ROI_KEYPOINT_HEAD.RESOLUTION = 14
_C.MODEL.ROI_KEYPOINT_HEAD.NUM_CLASSES = 17
_C.MODEL.ROI_KEYPOINT_HEAD.SHARE_BOX_FEATURE_EXTRACTOR = True
_C.MODEL.ROI_RELATION_HEAD = CN()
# share box feature extractor should be set False for neural-motifs
_C.MODEL.ROI_RELATION_HEAD.PREDICTOR = "MotifPredictor"
_C.MODEL.ROI_RELATION_HEAD.FEATURE_EXTRACTOR = "RelationFeatureExtractor"
_C.MODEL.ROI_RELATION_HEAD.POOLING_ALL_LEVELS = True
_C.MODEL.ROI_RELATION_HEAD.NUM_CLASSES = 51
_C.MODEL.ROI_RELATION_HEAD.BATCH_SIZE_PER_IMAGE = 64
_C.MODEL.ROI_RELATION_HEAD.POSITIVE_FRACTION = 0.25
_C.MODEL.ROI_RELATION_HEAD.USE_GT_BOX = True
_C.MODEL.ROI_RELATION_HEAD.USE_GT_OBJECT_LABEL = False
_C.MODEL.ROI_RELATION_HEAD.EMBED_DIM = 200
_C.MODEL.ROI_RELATION_HEAD.CONTEXT_DROPOUT_RATE = 0.2
_C.MODEL.ROI_RELATION_HEAD.CONTEXT_HIDDEN_DIM = 512
_C.MODEL.ROI_RELATION_HEAD.CONTEXT_POOLING_DIM = 4096
_C.MODEL.ROI_RELATION_HEAD.CONTEXT_OBJ_LAYER = 1 # assert >= 1
_C.MODEL.ROI_RELATION_HEAD.CONTEXT_REL_LAYER = 1 # assert >= 1
_C.MODEL.ROI_RELATION_HEAD.TRANSFORMER = CN()
# for TransformerPredictor only
_C.MODEL.ROI_RELATION_HEAD.TRANSFORMER.DROPOUT_RATE = 0.1
_C.MODEL.ROI_RELATION_HEAD.TRANSFORMER.OBJ_LAYER = 4
_C.MODEL.ROI_RELATION_HEAD.TRANSFORMER.REL_LAYER = 2
_C.MODEL.ROI_RELATION_HEAD.TRANSFORMER.NUM_HEAD = 8
_C.MODEL.ROI_RELATION_HEAD.TRANSFORMER.INNER_DIM = 2048
_C.MODEL.ROI_RELATION_HEAD.TRANSFORMER.KEY_DIM = 64
_C.MODEL.ROI_RELATION_HEAD.TRANSFORMER.VAL_DIM = 64
_C.MODEL.ROI_RELATION_HEAD.LABEL_SMOOTHING_LOSS = False
_C.MODEL.ROI_RELATION_HEAD.PREDICT_USE_VISION = True
_C.MODEL.ROI_RELATION_HEAD.PREDICT_USE_BIAS = True
_C.MODEL.ROI_RELATION_HEAD.REQUIRE_BOX_OVERLAP = True
_C.MODEL.ROI_RELATION_HEAD.NUM_SAMPLE_PER_GT_REL = 4 # when sample fg relationship from gt, the max number of corresponding proposal pairs
# in sgdet, to make sure the detector won't missing any ground truth bbox,
# we add grount truth box to the output of RPN proposals during Training
_C.MODEL.ROI_RELATION_HEAD.ADD_GTBOX_TO_PROPOSAL_IN_TRAIN = False
_C.MODEL.ROI_RELATION_HEAD.CAUSAL = CN()
# direct and indirect effect analysis
_C.MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_ANALYSIS = False
# Fusion
_C.MODEL.ROI_RELATION_HEAD.CAUSAL.FUSION_TYPE = 'sum'
# causal context feature layer
_C.MODEL.ROI_RELATION_HEAD.CAUSAL.CONTEXT_LAYER = 'motifs' # 'motifs', 'vctree', 'vtranse'
# separate spatial in union feature
_C.MODEL.ROI_RELATION_HEAD.CAUSAL.SEPARATE_SPATIAL = False
_C.MODEL.ROI_RELATION_HEAD.CAUSAL.SPATIAL_FOR_VISION = False
_C.MODEL.ROI_RELATION_HEAD.CAUSAL.EFFECT_TYPE = 'none' # 'TDE', 'TIE', 'TE'
# proportion of predicates
_C.MODEL.ROI_RELATION_HEAD.REL_PROP = [0.01858, 0.00057, 0.00051, 0.00109, 0.00150, 0.00489, 0.00432, 0.02913, 0.00245, 0.00121,
0.00404, 0.00110, 0.00132, 0.00172, 0.00005, 0.00242, 0.00050, 0.00048, 0.00208, 0.15608,
0.02650, 0.06091, 0.00900, 0.00183, 0.00225, 0.00090, 0.00028, 0.00077, 0.04844, 0.08645,
0.31621, 0.00088, 0.00301, 0.00042, 0.00186, 0.00100, 0.00027, 0.01012, 0.00010, 0.01286,
0.00647, 0.00084, 0.01077, 0.00132, 0.00069, 0.00376, 0.00214, 0.11424, 0.01205, 0.02958]
_C.MODEL.VGG = CN()
_C.MODEL.VGG.VGG16_OUT_CHANNELS= 512
# ---------------------------------------------------------------------------- #
# ResNe[X]t options (ResNets = {ResNet, ResNeXt}
# Note that parts of a resnet may be used for both the backbone and the head
# These options apply to both
# ---------------------------------------------------------------------------- #
_C.MODEL.RESNETS = CN()
# Number of groups to use; 1 ==> ResNet; > 1 ==> ResNeXt
_C.MODEL.RESNETS.NUM_GROUPS = 1
# Baseline width of each group
_C.MODEL.RESNETS.WIDTH_PER_GROUP = 64
# Place the stride 2 conv on the 1x1 filter
# Use True only for the original MSRA ResNet; use False for C2 and Torch models
_C.MODEL.RESNETS.STRIDE_IN_1X1 = True
# Residual transformation function
_C.MODEL.RESNETS.TRANS_FUNC = "BottleneckWithFixedBatchNorm"
# ResNet's stem function (conv1 and pool1)
_C.MODEL.RESNETS.STEM_FUNC = "StemWithFixedBatchNorm"
# Apply dilation in stage "res5"
_C.MODEL.RESNETS.RES5_DILATION = 1
_C.MODEL.RESNETS.BACKBONE_OUT_CHANNELS = 256 * 4
_C.MODEL.RESNETS.RES2_OUT_CHANNELS = 256
_C.MODEL.RESNETS.STEM_OUT_CHANNELS = 64
_C.MODEL.RESNETS.STAGE_WITH_DCN = (False, False, False, False)
_C.MODEL.RESNETS.WITH_MODULATED_DCN = False
_C.MODEL.RESNETS.DEFORMABLE_GROUPS = 1
# ---------------------------------------------------------------------------- #
# RetinaNet Options (Follow the Detectron version)
# ---------------------------------------------------------------------------- #
_C.MODEL.RETINANET = CN()
# This is the number of foreground classes and background.
_C.MODEL.RETINANET.NUM_CLASSES = 81
# Anchor aspect ratios to use
_C.MODEL.RETINANET.ANCHOR_SIZES = (32, 64, 128, 256, 512)
_C.MODEL.RETINANET.ASPECT_RATIOS = (0.5, 1.0, 2.0)
_C.MODEL.RETINANET.ANCHOR_STRIDES = (8, 16, 32, 64, 128)
_C.MODEL.RETINANET.STRADDLE_THRESH = 0
# Anchor scales per octave
_C.MODEL.RETINANET.OCTAVE = 2.0
_C.MODEL.RETINANET.SCALES_PER_OCTAVE = 3
# Use C5 or P5 to generate P6
_C.MODEL.RETINANET.USE_C5 = True
# Convolutions to use in the cls and bbox tower
# NOTE: this doesn't include the last conv for logits
_C.MODEL.RETINANET.NUM_CONVS = 4
# Weight for bbox_regression loss
_C.MODEL.RETINANET.BBOX_REG_WEIGHT = 4.0
# Smooth L1 loss beta for bbox regression
_C.MODEL.RETINANET.BBOX_REG_BETA = 0.11
# During inference, #locs to select based on cls score before NMS is performed
# per FPN level
_C.MODEL.RETINANET.PRE_NMS_TOP_N = 1000
# IoU overlap ratio for labeling an anchor as positive
# Anchors with >= iou overlap are labeled positive
_C.MODEL.RETINANET.FG_IOU_THRESHOLD = 0.5
# IoU overlap ratio for labeling an anchor as negative
# Anchors with < iou overlap are labeled negative
_C.MODEL.RETINANET.BG_IOU_THRESHOLD = 0.4
# Focal loss parameter: alpha
_C.MODEL.RETINANET.LOSS_ALPHA = 0.25
# Focal loss parameter: gamma
_C.MODEL.RETINANET.LOSS_GAMMA = 2.0
# Prior prob for the positives at the beginning of training. This is used to set
# the bias init for the logits layer
_C.MODEL.RETINANET.PRIOR_PROB = 0.01
# Inference cls score threshold, anchors with score > INFERENCE_TH are
# considered for inference
_C.MODEL.RETINANET.INFERENCE_TH = 0.05
# NMS threshold used in RetinaNet
_C.MODEL.RETINANET.NMS_TH = 0.4
# ---------------------------------------------------------------------------- #
# FBNet options
# ---------------------------------------------------------------------------- #
_C.MODEL.FBNET = CN()
_C.MODEL.FBNET.ARCH = "default"
# custom arch
_C.MODEL.FBNET.ARCH_DEF = ""
_C.MODEL.FBNET.BN_TYPE = "bn"
_C.MODEL.FBNET.SCALE_FACTOR = 1.0
# the output channels will be divisible by WIDTH_DIVISOR
_C.MODEL.FBNET.WIDTH_DIVISOR = 1
_C.MODEL.FBNET.DW_CONV_SKIP_BN = True
_C.MODEL.FBNET.DW_CONV_SKIP_RELU = True
# > 0 scale, == 0 skip, < 0 same dimension
_C.MODEL.FBNET.DET_HEAD_LAST_SCALE = 1.0
_C.MODEL.FBNET.DET_HEAD_BLOCKS = []
# overwrite the stride for the head, 0 to use original value
_C.MODEL.FBNET.DET_HEAD_STRIDE = 0
# > 0 scale, == 0 skip, < 0 same dimension
_C.MODEL.FBNET.KPTS_HEAD_LAST_SCALE = 0.0
_C.MODEL.FBNET.KPTS_HEAD_BLOCKS = []
# overwrite the stride for the head, 0 to use original value
_C.MODEL.FBNET.KPTS_HEAD_STRIDE = 0
# > 0 scale, == 0 skip, < 0 same dimension
_C.MODEL.FBNET.MASK_HEAD_LAST_SCALE = 0.0
_C.MODEL.FBNET.MASK_HEAD_BLOCKS = []
# overwrite the stride for the head, 0 to use original value
_C.MODEL.FBNET.MASK_HEAD_STRIDE = 0
# 0 to use all blocks defined in arch_def
_C.MODEL.FBNET.RPN_HEAD_BLOCKS = 0
_C.MODEL.FBNET.RPN_BN_TYPE = ""
# ---------------------------------------------------------------------------- #
# Solver
# ---------------------------------------------------------------------------- #
_C.SOLVER = CN()
_C.SOLVER.MAX_ITER = 40000
_C.SOLVER.BASE_LR = 0.002
_C.SOLVER.BIAS_LR_FACTOR = 2
_C.SOLVER.MOMENTUM = 0.9
_C.SOLVER.WEIGHT_DECAY = 0.0005
_C.SOLVER.WEIGHT_DECAY_BIAS = 0.0
_C.SOLVER.CLIP_NORM = 5.0
_C.SOLVER.GAMMA = 0.1
_C.SOLVER.STEPS = (30000,)
_C.SOLVER.WARMUP_FACTOR = 1.0 / 3
_C.SOLVER.WARMUP_ITERS = 500
_C.SOLVER.WARMUP_METHOD = "linear"
_C.SOLVER.SCHEDULE = CN()
_C.SOLVER.SCHEDULE.TYPE = "WarmupMultiStepLR" # "WarmupReduceLROnPlateau"
# the following paramters are only used for WarmupReduceLROnPlateau
_C.SOLVER.SCHEDULE.PATIENCE = 2
_C.SOLVER.SCHEDULE.THRESHOLD = 1e-4
_C.SOLVER.SCHEDULE.COOLDOWN = 1
_C.SOLVER.SCHEDULE.FACTOR = 0.5
_C.SOLVER.SCHEDULE.MAX_DECAY_STEP = 7
_C.SOLVER.CHECKPOINT_PERIOD = 2500
_C.SOLVER.GRAD_NORM_CLIP = 5.0
_C.SOLVER.PRINT_GRAD_FREQ = 5000
# whether validate and validate period
_C.SOLVER.TO_VAL = True
_C.SOLVER.PRE_VAL = True
_C.SOLVER.VAL_PERIOD = 2500
_C.SOLVER.RECORD_PERIOD = 200
# update schedule
# when load from a previous model, if set to True
# only maintain the iteration number and all the other settings of the
# schedule will be changed
_C.SOLVER.UPDATE_SCHEDULE_DURING_LOAD = False
# Number of images per batch
# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
# see 2 images per batch
_C.SOLVER.IMS_PER_BATCH = 16
# ---------------------------------------------------------------------------- #
# Specific train options
# ---------------------------------------------------------------------------- #
_C.TRAIN = CN()
_C.TRAIN.CONCEPT_AUGMENTED = False # whether to use "Concept Augmented Training": add additional relationship examples with higher (concept) level predicates. E.g. <person-standing on-street> will produce <person-on-street>.
_C.TRAIN.COGTREE_PATH = '' # used for CAT training
# _C.TRAIN.REWEIGHT = False
# _C.TRAIN.RESAMPLE = False
# _C.TRAIN.FOCAL_LOSS = False
_C.TRAIN.UNBIASED_TRAINING = '' # 'reweight', 'resample' or 'focal_loss'
_C.TRAIN.PREDICATE_WEIGHTS_PATH = 'datasets/vg/predicate_weights.pkl' # generated from VG150 training split. Bg:fg ratio is assumed to be 3:1 so the weight of BG is 1/3.
_C.TRAIN.WEIGHT_FACTOR = 1
_C.TRAIN.BAL_REWEIGHT_ONLY = False # # Whether to only return estimated labeling probability without performing BalNorm
_C.TRAIN.BALNORM_REWEIGHT_LABEL_PROB = False # Can be True ONLY WHEN Balnorm & UNBIASED_TRAINING is enabled!
_C.TRAIN.BALNORM_REWEIGHT_INV_LABEL_PROB = False # Can be True ONLY WHEN Balnorm & UNBIASED_TRAINING is enabled!
_C.TRAIN.BALNORM_REWEIGHT_LABEL_DISTRIB = False # Can be True ONLY WHEN Balnorm & UNBIASED_TRAINING is enabled!
_C.TRAIN.NORM_PREDICATE_COUNTS_PATH = 'datasets/vg/normalized_predicate_counts.pkl' # generated from VG150 training split.
_C.TRAIN.MONITOR_MEAN_RECALL = False
# ---------------------------------------------------------------------------- #
# Specific test options
# ---------------------------------------------------------------------------- #
_C.TEST = CN()
_C.TEST.EXPECTED_RESULTS = []
_C.TEST.EXPECTED_RESULTS_SIGMA_TOL = 4
# Number of images per batch
# This is global, so if we have 8 GPUs and IMS_PER_BATCH = 16, each GPU will
# see 2 images per batch
_C.TEST.IMS_PER_BATCH = 8
# Number of detections per image
_C.TEST.DETECTIONS_PER_IMG = 100
# ---------------------------------------------------------------------------- #
# Test-time augmentations for bounding box detection
# See configs/test_time_aug/e2e_mask_rcnn_R-50-FPN_1x.yaml for an example
# ---------------------------------------------------------------------------- #
_C.TEST.BBOX_AUG = CN()
# Enable test-time augmentation for bounding box detection if True
_C.TEST.BBOX_AUG.ENABLED = False
# Horizontal flip at the original scale (id transform)
_C.TEST.BBOX_AUG.H_FLIP = False
# Each scale is the pixel size of an image's shortest side
_C.TEST.BBOX_AUG.SCALES = ()
# Max pixel size of the longer side
_C.TEST.BBOX_AUG.MAX_SIZE = 4000
# Horizontal flip at each scale
_C.TEST.BBOX_AUG.SCALE_H_FLIP = False
_C.TEST.SAVE_PROPOSALS = False
# Settings for relation testing
_C.TEST.RELATION = CN()
_C.TEST.RELATION.MULTIPLE_PREDS = False
_C.TEST.RELATION.IOU_THRESHOLD = 0.5
_C.TEST.RELATION.REQUIRE_OVERLAP = True
# when predict the label of bbox, run nms on each cls
_C.TEST.RELATION.LATER_NMS_PREDICTION_THRES = 0.3
# synchronize_gather, used for sgdet, otherwise test on multi-gpu will cause out of memory
_C.TEST.RELATION.SYNC_GATHER = False
_C.TEST.ALLOW_LOAD_FROM_CACHE = True
# Below are added for STL
_C.TEST.ALLOW_LOAD_LABEL_PROB_FROM_CACHE = True
_C.TEST.EVAL_BBOX = True
_C.TEST.CUSTUM_EVAL = False
_C.TEST.CUSTUM_PATH = '.'
# Below are for STL
_C.TEST.STL_MODE = False
_C.TEST.STL_MODE_GENERAL = True # False
_C.TEST.STL_MODE_PREDCLS_LP = False
_C.TEST.STL_TRAINING_SET_LABELING_PROB = ''
# Below are for CogTree
_C.TEST.COMP_COGTREE = False
_C.TEST.WITH_COGTREE = False
_C.TEST.HANDPICKED_COGTREE = True # default: use handpick cogtree
_C.TEST.COGTREE_PATH = ''
# Below are for testing with labelgin probability ONLY
_C.TEST.WITH_LABEL_PROB_ONLY = False
# ---------------------------------------------------------------------------- #
# Hierarchical Multi-label Classification (HMC) options
# ---------------------------------------------------------------------------- #
_C.HMC = CN()
_C.HMC.C_HMC_TRAIN = False # whether to use C-HMC loss (MCLoss) during training
_C.HMC.C_HMC_TEST = False # whether to inference in C-HMC manner, i.e., p_i = max(p_j*y_j) for j in C(i)
_C.HMC.ANCESTOR_MAT_PATH = '' # path to the matrix of ancestors (R) (generated by ipynb file)
_C.TRAIN.MULTI_LABEL_TRAINING = False # whether to do multi-label per object-pair training instead of per-triplet training
_C.TRAIN.MULTI_LABEL_NORM_LOSS = False # whether to use normalized one-versus-all loss
# ---------------------------------------------------------------------------- #
# Misc options
# ---------------------------------------------------------------------------- #
_C.OUTPUT_DIR = "."
_C.DETECTED_SGG_DIR = "."
_C.GLOVE_DIR = "."
_C.PATHS_CATALOG = os.path.join(os.path.dirname(__file__), "paths_catalog.py")
_C.PATHS_DATA = os.path.join(os.path.dirname(__file__), "../data/datasets")
_C.LOG_TB = True # False # whether to use tensorboard to log losses
_C.DEBUG = False # whether to enable debug mode
# ---------------------------------------------------------------------------- #
# Precision options
# ---------------------------------------------------------------------------- #
# Precision of input, allowable: (float32, float16)
_C.DTYPE = "float32"
# Enable verbosity in apex.amp
_C.AMP_VERBOSE = False