-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathngram_embeddings.py
executable file
·460 lines (414 loc) · 14.2 KB
/
ngram_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
#!/usr/bin/env python
import torch
import re, sys, os, time, random
from transformers import BertTokenizer, BertModel
import base36
import logging
import psycopg2
from psycopg2.errors import SerializationFailure
import sqlalchemy
from sqlalchemy import create_engine, text, event, insert, Table, MetaData
from sqlalchemy.sql.expression import bindparam
from sqlalchemy.dialects.postgresql import JSONB
import numpy as np
# For Flask app
from flask import Flask, request, Response, g
import urllib
import json
import base64
from functools import lru_cache
CHARSET = "utf-8"
# Max number of dimensions to store in DB and use for queries (out of 768)
#TOP_N = 8
#TOP_N = 16
TOP_N = 32
#TOP_N = 64
#TOP_N = 128
# Discard the first N tokens as they have little differentiating value
"""
defaultdb=> select substring(token from 1 for 6), count(*) from text_embed group by 1 order by 2 desc;
substring | count
-----------+-------
8k al | 30
8k ez | 22
8k 69 | 2
8k in | 1
8k cd | 1
8k 2b | 1
8k 50 | 1
(7 rows)
"""
N_DISCARD = 2
# Delimiter for the base36 encoded array dimension values
DELIM = '' # Set to empty string if including the sign of the value as leading +/-
# Tweak minimum similarity in the DB session. Lower may be better given the LIMIT clause.
# set pg_trgm.similarity_threshold = 0.25;
# set pg_trgm.similarity_threshold = 0.1;
# The value passed in via the environment will be set in SQL session
min_sim = float(os.environ.get("MIN_SIM", "0.20"))
print("pg_trgm.similarity_threshold: {} (set via 'export MIN_SIM=0.1')".format(min_sim))
cache_size = int(os.environ.get("CACHE_SIZE", "1024"))
print("cache_size: {} (set via 'export CACHE_SIZE=1024')".format(cache_size))
n_threads = int(os.environ.get("N_THREADS", "1"))
print("n_threads: {} (set via 'export N_THREADS=10')".format(n_threads))
max_retries = int(os.environ.get("MAX_RETRIES", "3"))
print("max_retries: {} (set via 'export MAX_RETRIES=3')".format(max_retries))
token_array_len = int(os.environ.get("TOKEN_ARRAY_LEN", "8"))
print("token_array_len: {} (set via 'export TOKEN_ARRAY_LEN=8')".format(token_array_len))
log_level = os.environ.get("LOG_LEVEL", "WARN").upper()
logging.basicConfig(
level=log_level
, format="[%(asctime)s] %(message)s"
, datefmt="%m/%d/%Y %I:%M:%S %p"
)
print("Log level: {} (export LOG_LEVEL=[DEBUG|INFO|WARN|ERROR] to change this)".format(log_level))
logging.info("TOP_N: {}".format(TOP_N))
db_url = os.getenv("DB_URL")
if db_url is None:
print("DB_URL must be set")
sys.exit(1)
if len(sys.argv) < 2:
print("Usage: {} file [file2 ...]".format(sys.argv[0]))
sys.exit(1)
db_url = re.sub(r"^postgres(ql)?", "cockroachdb", db_url)
engine = create_engine(db_url, pool_size=20, pool_pre_ping=True, connect_args = { "application_name": "CRDB Embeddings" })
@event.listens_for(engine, "connect")
def connect(dbapi_connection, connection_record):
cur = dbapi_connection.cursor()
cur.execute("SET pg_trgm.similarity_threshold = %s;", (min_sim,))
cur.execute("SET SESSION CHARACTERISTICS AS TRANSACTION ISOLATION LEVEL READ COMMITTED;")
cur.close()
t0 = time.time()
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
et = time.time() - t0
logging.info("BertTokenizer: {} s".format(et))
t0 = time.time()
# NOTE: I did *not* see any speedup running this on a GCP VM with nVidia T4 GPU.
# Install script for drivers on GCP VM:
# https://github.com/GoogleCloudPlatform/compute-gpu-installation/blob/main/linux/startup_script.sh
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Model will run on {}".format(device))
# Set this up once and reuse
model = BertModel.from_pretrained("bert-base-uncased", output_hidden_states = True).to(device)
model.eval()
et = time.time() - t0
logging.info("BertModel + eval: {} s".format(et))
# Return a list of tokens, trimmed to token_array_len
def to_token_array(token, n_tokens=None):
if n_tokens is None:
n_tokens=int(len(token)/3)
rv = re.split(r"([-+][a-z0-9]{2})", token)[1::2]
rv = rv[0:n_tokens]
return rv
# The fist call to this takes ~ 500 ms but subsequent calls take ~ 40 ms
def gen_embeddings(s):
rv = None
marked_text = "[CLS] " + s + " [SEP]"
tokenized_text = tokenizer.tokenize(marked_text)
indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
tokens_tensor = torch.tensor([indexed_tokens])
segments_ids = [1] * len(tokenized_text)
segments_tensors = torch.tensor([segments_ids])
with torch.no_grad():
if "cuda" == device:
outputs = model(tokens_tensor.cuda(), segments_tensors.cuda())
else:
outputs = model(tokens_tensor, segments_tensors)
hidden_states = outputs[2]
token_vecs = hidden_states[-2][0]
sentence_embedding = torch.mean(token_vecs, dim=0)
rv = sentence_embedding.tolist()
logging.debug("vector dimensionality: {}".format(len(rv)))
return rv
def gen_svec(embed_list):
dims = {}
for i in range(0, len(embed_list)):
# Preserve the sign of the vector values
v = embed_list[i]
k = base36.dumps(i).zfill(2)
if v < 0:
k = '-' + k
else:
k = '+' + k
dims[k] = v
trunc = dict(sorted(dims.items(), key=lambda item: abs(item[1]), reverse=True)[N_DISCARD:TOP_N + N_DISCARD])
vals = list(trunc.values())
norm = np.linalg.norm(vals)
trunc = { k: v/norm for k, v in trunc.items() } # Normalizing the remaining values in this dict
print("trunc: ", json.dumps(trunc))
return trunc
# From the list of embeddings, the 768 element array, return a string consisting of
# the base 36 encoded array dimension (2 chars) for the TOP_N elements having the
# largest magnitude. These are separated by DELIM and have DELIM appended as well.
def gen_embed_token(svec):
rv = DELIM.join(list(svec.keys()))
rv += DELIM
return rv
# From the given string s, return [token, svec]
@lru_cache(maxsize=cache_size)
def get_token_svec(s):
rv = None
t0 = time.time()
embed = gen_embeddings(s)
et = time.time() - t0
logging.info("gen_embeddings: {} s".format(et))
svec = gen_svec(embed)
tok = gen_embed_token(svec)
return [tok, svec]
ddl_func = """
CREATE OR REPLACE FUNCTION score_row (q JSONB, r JSONB)
RETURNS FLOAT
LANGUAGE SQL
AS $$
SELECT COALESCE(SUM(qv * rv), 0.0) score
FROM (
SELECT
(json_each_text(q::JSONB)).@1 qk
, ((json_each_text(q::JSONB)).@2)::float qv
, (json_each_text(r::JSONB)).@1 rk
, ((json_each_text(r::JSONB)).@2)::float rv
)
WHERE qk = rk;
$$;
"""
arr_func = """
CREATE OR REPLACE FUNCTION to_token_array(token STRING, n INT)
RETURNS STRING[]
IMMUTABLE LEAKPROOF
LANGUAGE SQL
AS $$
SELECT ARRAY_REMOVE(
REGEXP_SPLIT_TO_ARRAY(
REGEXP_REPLACE(
SUBSTRING(token FROM 1 FOR n*3),
'([-+])([a-z0-9]{2})', '\\1\\2 ', 'g'
),
'\\s+'
), '');
$$;
"""
overlap_func = """
CREATE OR REPLACE FUNCTION overlap(a STRING[], b STRING[])
RETURNS INT
IMMUTABLE LEAKPROOF
LANGUAGE SQL
AS $$
SELECT COUNT(*)
FROM (
SELECT UNNEST(a) INTERSECT SELECT UNNEST(b)
);
$$;
"""
ddl_table = """
CREATE TABLE text_embed
(
uri STRING NOT NULL
, chunk_num INT NOT NULL
, token STRING NOT NULL
, svec JSONB NOT NULL
, chunk STRING NOT NULL
, token_array STRING[] NOT NULL
, PRIMARY KEY (uri, chunk_num)
, INVERTED INDEX text_embed_token_idx (token_array)
);
"""
sql_check_exists = """
SELECT COUNT(*) n FROM information_schema.tables WHERE table_catalog = 'defaultdb' AND table_name = 'text_embed';
"""
text_embed_table = None # Will be set after running setup_db()
def setup_db():
logging.info("Checking whether text_embed table exists")
n_rows = 0
with engine.connect() as conn:
rs = conn.execute(text(sql_check_exists))
for row in rs:
n_rows = row.n
table_exists = (n_rows == 1)
if not table_exists:
logging.info("Creating text_embed table")
with engine.connect() as conn:
conn.execute(text("SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;"))
conn.execute(text(ddl_table))
logging.info("Creating score_row UDF")
conn.execute(text(ddl_func))
logging.info("Creating to_token_array UDF")
conn.execute(text(arr_func))
logging.info("Creating overlap UDF")
conn.execute(text(overlap_func))
conn.commit()
else:
logging.info("text_embed table already exists")
def index_text(uri, text):
rows = []
n_chunk = 0
for s in re.split(r"\.\s+", text): # Sentence based splitting: makes sense to me.
s = s.strip()
if (len(s) > 0):
(token, svec) = get_token_svec(s)
logging.debug("URI: {}, CHUNK_NUM: {}\nCHUNK: '{}'".format(uri, n_chunk, s))
row_map = {
"uri": uri
, "chunk_num": n_chunk
, "token": token
, "svec": svec
, "chunk": s
, "token_array": to_token_array(token)
}
rows.append(row_map)
n_chunk += 1
with engine.begin() as conn:
conn.execute(insert(text_embed_table), rows)
def index_file(in_file):
text = ""
with open(in_file, mode="rt") as f:
for line in f:
text += line
in_file = re.sub(r"\./", '', in_file) # Trim leading '/'
retry(index_text, (in_file, text))
# Clean any special chars out of text
def clean_text(text):
return re.sub(r"['\",{}]", "", text)
# Decode a base64 encoded value to a UTF-8 string
def decode(b64):
b = base64.b64decode(b64)
return b.decode(CHARSET).strip()
app = Flask(__name__)
rerank_enum = set(["NONE", "REGEX", "COSINE"])
def gen_sql(rerank):
rerank = rerank.upper()
if rerank not in rerank_enum:
logging.warn("rerank value '{}' not allowed".format(rerank))
rerank = "NONE"
rv = """
WITH q_embed AS
(
SELECT uri, OVERLAP(TO_TOKEN_ARRAY(:q_tok, :n_tok), token_array)/10.0 sim, token, chunk, svec
FROM text_embed
WHERE token_array && TO_TOKEN_ARRAY(:q_tok, :n_tok)
ORDER BY sim DESC
LIMIT :limit
)
"""
if "REGEX" == rerank:
pass # Already handled in search()
elif "COSINE" == rerank:
rv += """
, q_cos AS
(
SELECT uri, score_row(:q_svec, svec) sim, token, chunk
FROM q_embed
)
SELECT *
FROM q_cos
ORDER BY q_cos.sim DESC
"""
if not "COSINE" == rerank:
rv += """
SELECT uri, sim, token, chunk from q_embed
"""
return rv
# Arg: search terms
# Returns: list of {"uri": uri, "sim": sim, "token": token, "chunk": chunk}
def search(terms, limit=5, rerank="none"):
logging.info("rerank: {}".format(rerank))
q = ' '.join(terms)
rv = []
(tok, svec) = get_token_svec(q)
logging.info("Query string: '{}'\nToken: '{}'".format(q, tok))
logging.info("Query svec: {}".format(svec))
t0 = time.time()
stmt = None
if "REGEX" == rerank.upper():
terms_regex = '({})'.format('|'.join(list(set(terms)))) # Remove duplicate terms via the set
logging.info("terms_regex: {}".format(terms_regex))
stmt = text(gen_sql(rerank) + "\nWHERE chunk ~* :regex").bindparams(q_tok=tok, n_tok=token_array_len, limit=limit, regex=terms_regex)
elif "COSINE" == rerank.upper():
stmt = text(gen_sql(rerank)).bindparams(bindparam('q_svec', type_=JSONB), q_tok=tok, n_tok=token_array_len, limit=limit, q_svec=svec)
else:
stmt = text(gen_sql(rerank)).bindparams(q_tok=tok, n_tok=token_array_len, limit=limit)
with engine.connect() as conn:
rs = conn.execute(stmt)
if rs is not None:
for row in rs:
(uri, sim, token, chunk) = row
rv.append({"uri": uri, "sim": float(sim), "token": token, "chunk": chunk})
et = time.time() - t0
logging.info("SQL query time: {} ms".format(et * 1000))
return rv
# Retry wrapper for functions interacting with the DB
def retry(f, args):
for retry in range(0, max_retries):
if retry > 0:
logging.warning("Retry number {}".format(retry))
try:
return f(*args)
except SerializationFailure as e:
logging.warning("Error: %s", e)
logging.warning("EXECUTE SERIALIZATION_FAILURE BRANCH")
sleep_s = (2**retry) * 0.1 * (random.random() + 0.5)
logging.warning("Sleeping %s s", sleep_s)
time.sleep(sleep_s)
except (sqlalchemy.exc.OperationalError, psycopg2.OperationalError) as e:
# Get a new connection and try again
logging.warning("Error: %s", e)
logging.warning("EXECUTE CONNECTION FAILURE BRANCH")
sleep_s = 0.12 + random.random() * 0.25
logging.warning("Sleeping %s s", sleep_s)
time.sleep(sleep_s)
except psycopg2.Error as e:
logging.warning("Error: %s", e)
logging.warning("EXECUTE DEFAULT BRANCH")
raise e
raise ValueError(f"Transaction did not succeed after {max_retries} retries")
# Verify transaction isolation level
def log_txn_isolation_level():
txn_lvl = "Unknown"
stmt = text("SHOW transaction_isolation;")
with engine.connect() as conn:
rs = conn.execute(stmt)
cur.execute("SHOW transaction_isolation;")
for row in rs:
(txn_lvl) = row
logging.info("transaction_isolation: {}".format(txn_lvl))
@app.route("/health", methods=["GET"])
def health():
return Response("OK", status=200, mimetype="text/plain")
#
# The search/query
# EXAMPLE (with a limit of 10 results):
# curl http://localhost:18080/search/$( echo -n "Using Lateral Joins" | base64 )
#
# rerank is one of none, regex, cosine
#
@app.route("/search/<q_base_64>/<int:limit>")
@app.route("/search/<q_base_64>/<int:limit>/<rerank>")
def do_search(q_base_64, limit, rerank="none"):
q = decode(q_base_64)
q = clean_text(q)
rv = retry(search, (q.split(), limit, rerank))
logging.info(get_token_svec.cache_info())
return Response(json.dumps(rv), status=200, mimetype="application/json")
@app.route("/index", methods=["POST"])
def do_index():
#log_txn_isolation_level()
data = request.get_json(force=True)
retry(index_text, (data["uri"], data["text"]))
# Note the extra arguments here which translate the \uxxxx escape codes
#print("Data: " + json.dumps(data, ensure_ascii=False).encode("utf8").decode())
return Response("OK", status=200, mimetype="text/plain")
# Query mode (unlikely to get used)
if "-q" == sys.argv[1][0:2]:
terms = sys.argv[2:]
for row in search(terms):
print("URI: {}\nSCORE: {}\nTOKEN: {}\nCHUNK: {}\n".format(row["uri"], row["sim"], row["token"], row["chunk"]))
# Server mode
elif "-s" == sys.argv[1][0:2]:
setup_db()
text_embed_table = Table("text_embed", MetaData(), autoload_with=engine)
port = int(os.getenv("FLASK_PORT", 18080))
from waitress import serve
serve(app, host="0.0.0.0", port=port, threads=n_threads)
# Indexing mode
else:
print("Usage: {} [-s for server mode] [-q for query mode]\n".format(sys.argv[0]))
sys.exit(1)