forked from fboulnois/stable-diffusion-docker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocker-entrypoint.py
executable file
·263 lines (229 loc) · 7.11 KB
/
docker-entrypoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#!/usr/bin/env python
import argparse, datetime, inspect, os
import numpy as np
import torch
from PIL import Image
from diffusers import (
OnnxStableDiffusionPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionImg2ImgPipeline,
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionUpscalePipeline,
schedulers,
)
def iso_date_time():
return datetime.datetime.now().isoformat()
def load_image(path):
image = Image.open(os.path.join("input", path)).convert("RGB")
print(f"loaded image from {path}:", iso_date_time(), flush=True)
return image
def remove_unused_args(p):
params = inspect.signature(p.pipeline).parameters.keys()
args = {
"prompt": p.prompt,
"negative_prompt": p.negative_prompt,
"image": p.image,
"mask_image": p.mask,
"height": p.H,
"width": p.W,
"num_images_per_prompt": p.n_samples,
"num_inference_steps": p.ddim_steps,
"guidance_scale": p.scale,
"strength": p.strength,
"generator": p.generator,
}
return {p: args[p] for p in params if p in args}
def stable_diffusion_pipeline(p):
p.dtype = torch.float16 if p.half else torch.float32
if p.device == "cpu":
p.diffuser = OnnxStableDiffusionPipeline
p.revision = "onnx"
else:
p.diffuser = StableDiffusionPipeline
p.revision = "fp16" if p.half else "main"
upscalers = ["stabilityai/stable-diffusion-x4-upscaler"]
if p.image is not None:
if p.revision == "onnx":
p.diffuser = OnnxStableDiffusionImg2ImgPipeline
elif p.model in upscalers:
p.diffuser = StableDiffusionUpscalePipeline
else:
p.diffuser = StableDiffusionImg2ImgPipeline
p.image = load_image(p.image)
if p.mask is not None:
if p.revision == "onnx":
p.diffuser = OnnxStableDiffusionInpaintPipeline
else:
p.diffuser = StableDiffusionInpaintPipeline
p.mask = load_image(p.mask)
if p.token is None:
with open("token.txt") as f:
p.token = f.read().replace("\n", "")
if p.seed == 0:
p.seed = torch.random.seed()
if p.revision == "onnx":
p.seed = p.seed >> 32 if p.seed > 2**32 - 1 else p.seed
p.generator = np.random.RandomState(p.seed)
else:
p.generator = torch.Generator(device=p.device).manual_seed(p.seed)
print("load pipeline start:", iso_date_time(), flush=True)
pipeline = p.diffuser.from_pretrained(
p.model,
torch_dtype=p.dtype,
revision=p.revision,
use_auth_token=p.token,
).to(p.device)
if p.scheduler is not None:
scheduler = getattr(schedulers, p.scheduler)
pipeline.scheduler = scheduler.from_config(pipeline.scheduler.config)
if p.skip:
pipeline.safety_checker = None
if p.attention_slicing:
pipeline.enable_attention_slicing()
if p.xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
p.pipeline = pipeline
print("loaded models after:", iso_date_time(), flush=True)
return p
def stable_diffusion_inference(p):
prefix = p.prompt.replace(" ", "_")[:170]
for j in range(p.n_iter):
result = p.pipeline(**remove_unused_args(p))
for i, img in enumerate(result.images):
idx = j * p.n_samples + i + 1
out = f"{prefix}__steps_{p.ddim_steps}__scale_{p.scale:.2f}__seed_{p.seed}__n_{idx}.png"
img.save(os.path.join("output", out))
print("completed pipeline:", iso_date_time(), flush=True)
def main():
parser = argparse.ArgumentParser(description="Create images from a text prompt.")
parser.add_argument(
"prompt0",
metavar="PROMPT",
type=str,
nargs="?",
help="The prompt to render into an image",
)
parser.add_argument(
"--prompt", type=str, nargs="?", help="The prompt to render into an image"
)
parser.add_argument(
"--n_samples",
type=int,
nargs="?",
default=1,
help="Number of images to create per run",
)
parser.add_argument(
"--n_iter",
type=int,
nargs="?",
default=1,
help="Number of times to run pipeline",
)
parser.add_argument(
"--H", type=int, nargs="?", default=512, help="Image height in pixels"
)
parser.add_argument(
"--W", type=int, nargs="?", default=512, help="Image width in pixels"
)
parser.add_argument(
"--scale",
type=float,
nargs="?",
default=7.5,
help="Classifier free guidance scale",
)
parser.add_argument(
"--seed", type=int, nargs="?", default=0, help="RNG seed for repeatability"
)
parser.add_argument(
"--ddim_steps", type=int, nargs="?", default=50, help="Number of sampling steps"
)
parser.add_argument(
"--attention-slicing",
type=bool,
nargs="?",
const=True,
default=False,
help="Use less memory at the expense of inference speed",
)
parser.add_argument(
"--device",
type=str,
nargs="?",
default="cuda",
help="The cpu or cuda device to use to render images",
)
parser.add_argument(
"--half",
type=bool,
nargs="?",
const=True,
default=False,
help="Use float16 (half-sized) tensors instead of float32",
)
parser.add_argument(
"--image",
type=str,
nargs="?",
help="The input image to use for image-to-image diffusion",
)
parser.add_argument(
"--mask",
type=str,
nargs="?",
help="The input mask to use for diffusion inpainting",
)
parser.add_argument(
"--model",
type=str,
nargs="?",
default="CompVis/stable-diffusion-v1-4",
help="The model used to render images",
)
parser.add_argument(
"--negative-prompt",
type=str,
nargs="?",
help="The prompt to not render into an image",
)
parser.add_argument(
"--scheduler",
type=str,
nargs="?",
help="Override the scheduler used to denoise the image",
)
parser.add_argument(
"--skip",
type=bool,
nargs="?",
const=True,
default=False,
help="Skip the safety checker",
)
parser.add_argument(
"--strength",
type=float,
default=0.75,
help="Diffusion strength to apply to the input image",
)
parser.add_argument(
"--token", type=str, nargs="?", help="Huggingface user access token"
)
parser.add_argument(
"--xformers-memory-efficient-attention",
type=bool,
nargs="?",
const=True,
default=False,
help="Use less memory but require the xformers library",
)
args = parser.parse_args()
if args.prompt0 is not None:
args.prompt = args.prompt0
pipeline = stable_diffusion_pipeline(args)
stable_diffusion_inference(pipeline)
if __name__ == "__main__":
main()