-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathclassifier.py
327 lines (260 loc) · 12.6 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import tensorflow as tf
import numpy as np
from emoji_reader import emoji_64
from model_helpers import Embedding, xavier, build_bidirectional_rnn
class EmojiClassifier(object):
def __init__(self,
batch_size,
vocab_size,
emoji_num,
embed_size,
num_unit,
num_gpu,
lr=0.001,
dropout=0.2,
cell_type=tf.nn.rnn_cell.GRUCell
):
self.batch_size = batch_size
self.sess = None
self.emoji_index = None
self.dropout = tf.placeholder_with_default(dropout, (), name="dropout")
self.num_gpu = num_gpu
self.cell_type = cell_type
self.text = tf.placeholder(tf.int32, shape=[None, batch_size], name="text")
self.len = tf.placeholder(tf.int32, shape=[batch_size], name="text_length")
self.emoji = tf.placeholder(tf.int32, shape=[batch_size], name="emoji_label")
with tf.variable_scope("embeddings"):
embedding = Embedding(vocab_size, embed_size)
text_emb = embedding(self.text)
with tf.variable_scope("bi_rnn_1"): # difference between var scope and name scope?
# tuple#2: [max_time, batch_size, num_unit]
outputs_1, _ = build_bidirectional_rnn(
num_unit, text_emb, self.len, cell_type, num_gpu, drop=self.dropout, base_gpu=0)
with tf.variable_scope("bi_rnn_2"):
rnn2_input = tf.concat([outputs_1[0], outputs_1[1]], axis=2)
outputs_2, _ = build_bidirectional_rnn(
num_unit, rnn2_input, self.len, cell_type, num_gpu, drop=self.dropout, base_gpu=2)
with tf.variable_scope("attention"):
word_states = tf.concat( # [outputs_1[0], outputs_1[1], text_emb], axis=2)
[outputs_1[0], outputs_1[1], outputs_2[0], outputs_2[1], text_emb], axis=2) # [max_t, b_sz, h_dim]
weights = tf.layers.dense(word_states, 1)
weights = tf.exp(weights) # [max_len, batch_size, 1]
# mask superfluous dimensions
max_time = tf.shape(self.text)[0]
weight_mask = tf.sequence_mask(self.len, max_time, dtype=tf.float32)
weight_mask = tf.expand_dims(
tf.transpose(weight_mask), axis=-1) # transpose for time_major & expand to be broadcast-able
weights = weights * weight_mask
# weight regularization
sums = tf.expand_dims(tf.reduce_sum(weights, axis=0), 0) # [1, batch_size, 1]
sums = tf.clip_by_value(sums, 1e-10, 1000.)
weights = weights / sums
weights = tf.transpose(weights, [1, 0, 2]) # [batch_size, max_len, 1]
word_states = tf.transpose(word_states, [1, 2, 0]) # [batch_size, h_dim, max_len]
text_vec = tf.squeeze(tf.matmul(word_states, weights), axis=2) # [batch_size, h_dim]
with tf.variable_scope("loss"):
self.logits = tf.layers.dense(text_vec, emoji_num)
self.prob = tf.nn.softmax(self.logits)
self.loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(labels=self.emoji, logits=self.logits))
with tf.variable_scope("accuracy"):
self.top_5_accuracy_vec = tf.nn.in_top_k(self.logits, self.emoji, k=5)
self.top_5_accuracy = tf.reduce_mean(tf.cast(self.top_5_accuracy_vec, tf.float32))
self.accuracy_vec = tf.nn.in_top_k(self.logits, self.emoji, k=1)
self.accuracy = tf.reduce_mean(tf.cast(self.accuracy_vec, tf.float32))
with tf.variable_scope("optimization"):
optimizer = tf.train.AdamOptimizer(lr)
self.update_step = optimizer.minimize(self.loss)
def set_sess(self, sess):
self.sess = sess
def set_emoji_index(self, emoji_index):
self.emoji_index = emoji_index
def train_update(self, batch):
text = batch[3]
emoji_label = map_emoji(batch[0], self.emoji_index)
length = batch[4]
_, loss, accuracy, accuracy5 = self.sess.run(
[self.update_step, self.loss, self.accuracy, self.top_5_accuracy],
feed_dict={self.text: text, self.emoji: emoji_label, self.len: length})
return loss, accuracy, accuracy5
def eval(self, batches):
loss_l = []
accuracy_l = []
accuracy5_l = []
for batch in batches:
text = batch[3]
emoji_label = map_emoji(batch[0], self.emoji_index)
length = batch[4]
loss, accuracy, accuracy5 = self.sess.run(
[self.loss, self.accuracy, self.top_5_accuracy],
feed_dict={self.text: text, self.emoji: emoji_label, self.len: length, self.dropout: 0.})
loss_l.append(loss)
accuracy_l.append(accuracy)
accuracy5_l.append(accuracy5)
return float(np.mean(loss_l)), float(np.mean(accuracy_l)), float(np.mean(accuracy5_l))
def eval_2(self, batches):
from collections import Counter
total = Counter()
hit = Counter()
hit5 = Counter()
for batch in batches:
text = batch[3]
emoji_label = map_emoji(batch[0], self.emoji_index)
length = batch[4]
total.update(list(emoji_label))
accuracy, accuracy5 = self.sess.run(
[self.accuracy_vec, self.top_5_accuracy_vec],
feed_dict={self.text: text, self.emoji: emoji_label, self.len: length, self.dropout: 0.})
for i in range(self.batch_size):
if accuracy[i]:
hit.update([emoji_label[i]])
if accuracy5[i]:
hit5.update([emoji_label[i]])
return total, hit, hit5
def get_prob(self, emoji, gen, gen_len):
emoji = map_emoji(emoji, self.emoji_index) # b2s
row_index = np.asarray(range(emoji.shape[0]))
# index = np.stack([row_index, emoji], axis=-1)
prob, ac_vec, ac5_vec = self.sess.run(
[self.prob, self.accuracy_vec, self.top_5_accuracy_vec],
feed_dict={self.text: gen, self.emoji: emoji, self.len: gen_len})
prob = prob[row_index, emoji]
return prob, ac_vec, ac5_vec
def get_prob_for_gen(self, emoji_no_map, gen, gen_len):
emoji = emoji_no_map
row_index = np.asarray(range(emoji.shape[0]))
# index = np.stack([row_index, emoji], axis=-1)
prob, ac_vec, ac5_vec = self.sess.run(
[self.prob, self.accuracy_vec, self.top_5_accuracy_vec],
feed_dict={self.text: gen, self.emoji: emoji, self.len: gen_len})
prob = prob[row_index, emoji]
return prob, ac_vec, ac5_vec
def get_logits(self, emoji, gen, gen_len):
emoji = map_emoji(emoji, self.emoji_index)
loss, logits, ac, ac5 = self.sess.run(
[self.loss, self.logits, self.accuracy, self.top_5_accuracy],
feed_dict={self.text: gen, self.emoji: emoji, self.len: gen_len})
return loss, logits, ac, ac5
def get_all_prob(self, batches):
p = None
for batch in batches:
text = batch[3]
emoji_label = map_emoji(batch[0], self.emoji_index)
length = batch[4]
prob = self.sess.run(
self.prob,
feed_dict={self.text: text, self.emoji: emoji_label, self.len: length, self.dropout: 0.})
if p is None:
p = prob
else:
p = np.concatenate((p, prob), axis=0)
return p
def get_all_prob_and_eval(self, batches):
p = None
loss_l = []
accuracy_l = []
accuracy5_l = []
for batch in batches:
text = batch[3]
emoji_label = map_emoji(batch[0], self.emoji_index)
length = batch[4]
loss, prob, accuracy, accuracy5 = self.sess.run(
[self.loss, self.prob, self.accuracy, self.top_5_accuracy],
feed_dict={self.text: text, self.emoji: emoji_label, self.len: length, self.dropout: 0.})
p = prob if p is None else np.concatenate((p, prob), axis=0)
loss_l.append(loss)
accuracy_l.append(accuracy)
accuracy5_l.append(accuracy5)
return p, float(np.mean(loss_l)), float(np.mean(accuracy_l)), float(np.mean(accuracy5_l))
emoji_num = 64
from params.full import *
def map_emoji(word_indices, emoji_index_dict):
return np.array([emoji_index_dict[index] for index in word_indices])
if __name__ == '__main__':
from time import gmtime, strftime
from os import makedirs, chdir
from os.path import join, dirname
import json
from helpers import build_vocab, build_data, batch_generator, build_emoji_index
from helpers import print_out
get_down_params = False
num_epoch = 6
test_step = 50
chdir("mojitalk_data")
output_dir = join("classifier", strftime("%m-%d_%H-%M-%S", gmtime()))
vocab_f = "vocab.ori"
train_ori_f = "train.ori"
train_rep_f = "train.rep"
test_ori_f = "test.ori" # "dev.ori"
test_rep_f = "test.rep" # "dev.rep"
makedirs(dirname(join(output_dir, "breakpoints/")), exist_ok=True)
log_f = open(join(output_dir, "log.txt"), "w")
emoji_index, _, emoji_sorted = build_emoji_index(vocab_f, emoji_64)
# build vocab
word2index, index2word = build_vocab(vocab_f)
start_i, end_i = word2index['<s>'], word2index['</s>']
vocab_size = len(word2index)
classifier = EmojiClassifier(batch_size, vocab_size, emoji_num, embed_size, num_unit, num_gpu)
# build data
train_data = build_data(train_ori_f, train_rep_f, word2index)
test_data = build_data(test_ori_f, test_rep_f, word2index)
test_batches = batch_generator(
test_data, start_i, end_i, batch_size, permutate=False)
print_out("*** CLASSIFIER DATA READY ***")
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
saver = tf.train.Saver()
with tf.Session(config=config) as sess:
classifier.set_sess(sess)
classifier.set_emoji_index(emoji_index)
global_step = best_step = 1
start_epoch = best_epoch = 1
best_loss = 1000.
sess.run(tf.global_variables_initializer())
for epoch in range(start_epoch, num_epoch + 1):
train_batches = batch_generator(
train_data, start_i, end_i, batch_size)
loss_l = []
accuracy_l = []
accuracy5_l = []
for batch in train_batches:
loss, accuracy, accuracy5 = classifier.train_update(batch)
loss_l.append(loss)
accuracy_l.append(accuracy)
accuracy5_l.append(accuracy5)
if global_step % test_step == 0:
time_now = strftime("%m-%d %H:%M:%S", gmtime())
print_out('epoch:\t%d\tstep:\t%d\tbatch-loss/accuracy/accuracy5:\t%.3f\t%.1f\t%.1f\t\t%s' %
(epoch, global_step,
np.mean(loss_l), np.mean(accuracy_l) * 100, np.mean(accuracy5_l) * 100, time_now),
f=log_f)
if global_step % (test_step * 10) == 0:
loss, accuracy, accuracy5 = classifier.eval(test_batches)
print_out('EPOCH-\t%d\tSTEP-\t%d\tTEST-loss/accuracy/accuracy5-\t%.3f\t%.1f\t%.1f' %
(epoch, global_step,
loss, accuracy * 100, accuracy5 * 100),
f=log_f)
if best_loss >= loss:
best_loss = loss
best_epoch = epoch
best_step = global_step
# save breakpoint
path = join(output_dir, "breakpoints/best_test_loss.ckpt")
save_path = saver.save(sess, path)
# save best epoch/step
best_dict = {
"loss": best_loss, "epoch": best_epoch, "step": best_step, "accuracy": accuracy,
"top_5_accuracy": accuracy5}
with open(path, "w") as f:
f.write(json.dumps(best_dict, indent=2))
global_step += 1
if get_down_params:
prob = classifier.get_all_prob(test_batches) # batch_num * 64
cov = np.corrcoef(prob, rowvar=False)
with open("test%d.npy" % epoch, "wb") as f:
np.save(f, cov)
prob = classifier.get_all_prob(train_batches) # batch_num * 64
cov = np.corrcoef(prob, rowvar=False)
with open("train%d.npy"% epoch, "wb") as f:
np.save(f, cov)
log_f.close()