-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmetrics.py
63 lines (44 loc) · 2.14 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import pandas as pd
import numpy as np
from sklearn.metrics import precision_score, recall_score, f1_score, confusion_matrix
def compute_f1_false_positive(data):
# Assuming 'iso_script' contains true labels and 'top_pred' contains predicted labels
iso_codes = list(data['iso_script'])
predicted_iso_codes = list(data['top_pred'])
labels = list(set(iso_codes + predicted_iso_codes))
label_to_index = {label: index for index, label in enumerate(labels)}
iso_codes = [label_to_index[label] for label in iso_codes]
predicted_iso_codes = [label_to_index[label] for label in predicted_iso_codes]
# Compute F1 scores per label
f1_scores = f1_score(iso_codes, predicted_iso_codes, average=None)
precision_scores = precision_score(iso_codes, predicted_iso_codes, average=None)
recall_scores = recall_score(iso_codes, predicted_iso_codes, average=None)
# Compute False Positive Rate per label
confusion_mat = confusion_matrix(iso_codes, predicted_iso_codes)
FP = confusion_mat.sum(axis=0) - np.diag(confusion_mat)
FN = confusion_mat.sum(axis=1) - np.diag(confusion_mat)
TP = np.diag(confusion_mat)
TN = confusion_mat.sum() - (FP + FN + TP)
fp_rate = FP / (FP + TN)
# Handle division by zero by setting FPR to 0 where actual_negatives is 0
fp_rate = np.nan_to_num(fp_rate, nan=0.0)
# Create DataFrame to store results
result_df = pd.DataFrame({
'label': labels,
'f1_score': f1_scores,
'precision_score': precision_scores,
'recall_score': recall_scores,
'false_positive_rate': fp_rate
})
return result_df
# Example data (replace this with your actual data)
data = {
'sentence': ['This is sentence 1', 'Une autre phrase', 'Phrase numéro trois'],
'iso_script': ['eng_Latn', 'fra_Latn', 'spa_Latn'], # Assuming this is the true label
'top_pred': ['eng_Latn', 'eng_Latn', 'fas_Arab'] # Predicted language labels
}
df_2 = pd.DataFrame(data)
# Compute F1, Recall, Precision scores and false positive rate
result_df = compute_f1_false_positive(df_2)
print("Result DataFrame:")
print(result_df)