-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpfn.py
58 lines (47 loc) · 1.67 KB
/
pfn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from load_data import load_data
from energyflow.archs import PFN
from keras import optimizers
import energyflow as ef
import numpy as np
import argparse
from sklearn.metrics import roc_curve, auc
NUM_EPOCHS = 50
def split_data(X, Y, test_prop=.1, val_prop=.1):
length = X.shape[0]
test_sz = int(length * test_prop)
val_sz = int(length * val_prop)
train_sz = length - test_sz - val_sz
X_train = X[:train_sz]
X_val = X[train_sz:train_sz+val_sz]
X_test = X[train_sz+val_sz:]
Y_train = Y[:train_sz]
Y_val = Y[train_sz:train_sz+val_sz]
Y_test = Y[train_sz+val_sz:]
return X_train, X_val, X_test, Y_train, Y_val, Y_test
def preprocess(X):
X = X[:,:,:3]
for x in X:
mask = x[:,0] > 0
weighted_avgs = np.average(x[mask,1:3], weights=x[mask,0], axis=0)
x[:, 0] = x[:, 0] / np.sum(x[:, 0])
x[mask, 1:3] = x[mask, 1:3] - weighted_avgs
return X
if __name__ == '__main__':
phi_sizes=(100,100,128)
f_sizes=(100,100,100)
X, Y = load_data(200000, 'final_efn_train')
X = preprocess(X)
Y = ef.utils.to_categorical(Y)
p = np.random.permutation(len(X))
X = X[p]
Y = Y[p]
X_train, X_val, X_test, Y_train, Y_val, Y_test = split_data(
X, Y, test_prop=1.0/5, val_prop=1.0/5)
print(X_train[:3,:5])
adam = optimizers.Adam(lr=.0006)
pfn = PFN(input_dim=X_train.shape[-1], Phi_sizes=phi_sizes, F_sizes=f_sizes, optimizer=adam)
pfn.fit(X_train, Y_train, epochs=NUM_EPOCHS, batch_size=250,
validation_data=(X_val,Y_val), verbose=1)
preds = pfn.predict(X_test, batch_size=1000)
fpr, tpr, thresholds = roc_curve(Y_test[:,1], preds[:,1])
print('AUC: ' + str(auc(fpr, tpr)))