-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathTransforms.cpp
261 lines (231 loc) · 10.4 KB
/
Transforms.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#include "Transforms.hpp"
#include <llvm/IR/IRBuilder.h>
#include <llvm/IR/InstrTypes.h>
#include <llvm/Pass.h>
#include <llvm/Transforms/Scalar.h>
#include "DeriveZeroMBA.hpp"
static const auto kReg2MemPass = llvm::createDemoteRegisterToMemoryPass();
// zero_expr and x cannot be null
static llvm::Value *GetObfuscatedValue(llvm::IRBuilder<> &builder, llvm::Value *zero_expr, llvm::Value *x) {
// return a version of x (that is always equal to x) that has some
// binary operator applied to it
// zero_expr cannot be too simple or this transform will be optimized
// out by the compiler. zero_expr should be generated by GenerateRandomMBAIdentity
// zero_expr must be a llvm::Value that is ALWAYS equal to zero
switch (std::rand() % 4) {
case 0:
// x + 0 = x
return builder.CreateAdd(x, zero_expr);
break;
case 1:
// x - 0 = x
return builder.CreateSub(x, zero_expr);
break;
case 2:
// x ^ 0 = x
return builder.CreateXor(x, zero_expr);
break;
case 3:
// x | 0 = x
return builder.CreateOr(x, zero_expr);
break;
}
return nullptr;
}
namespace obfus {
bool TransformBinaryOperatorBasicBlock(llvm::BasicBlock &BB) {
bool changed = false;
for (auto I = BB.begin(); I != BB.end(); ++I) {
// Skip non-binary (e.g. unary or compare) instructions
const auto bin_op = llvm::dyn_cast<llvm::BinaryOperator>(I);
if (!bin_op || !bin_op->getType()->isIntegerTy()) {
continue;
}
llvm::IRBuilder<> builder(bin_op);
// useful variables in building the instruction for substitution
const auto x = bin_op->getOperand(0);
const auto y = bin_op->getOperand(1);
// may not actually exist in which case y will just be selected
const auto const_operand = (llvm::dyn_cast<llvm::ConstantInt>(x)) ? x : y;
const auto non_const_operand = (!llvm::dyn_cast<llvm::ConstantInt>(x)) ? x : y;
std::vector<llvm::Value *> vars{const_operand, non_const_operand, llvm::ConstantInt::get(bin_op->getType(), std::rand() % 255)};
// std::vector<llvm::Value *> vars{const_operand, non_const_operand, llvm::ConstantInt::get(bin_op->getType(), std::rand() % 255), llvm::ConstantInt::get(bin_op->getType(), std::rand() % 255)};
const auto x_expr = GetObfuscatedValue(builder, obfus::GenerateRandomMBAIdentity(builder, bin_op->getType(), vars), x);
const auto y_expr = GetObfuscatedValue(builder, obfus::GenerateRandomMBAIdentity(builder, bin_op->getType(), vars), y);
#ifdef DEBUG
llvm::errs() << "Opcode: Instruction::" << I->getOpcodeName() << "\n";
#endif
llvm::Value *new_value = nullptr;
switch (I->getOpcode()) {
case llvm::Instruction::Add:
new_value = builder.CreateAdd(x_expr, y_expr);
break;
case llvm::Instruction::Sub:
new_value = builder.CreateSub(x_expr, y_expr);
break;
case llvm::Instruction::Xor:
new_value = builder.CreateXor(x_expr, y_expr);
break;
case llvm::Instruction::Or:
new_value = builder.CreateOr(x_expr, y_expr);
break;
case llvm::Instruction::And:
new_value = builder.CreateAnd(x_expr, y_expr);
break;
}
// if we have something to replace the instruction with, replace it
if (new_value) {
bin_op->replaceAllUsesWith(new_value);
changed = true;
}
}
return changed;
}
bool TransformIntegerConstants(llvm::BasicBlock &BB) {
bool changed = false;
// see https://sci-hub.ee/https://link.springer.com/chapter/10.1007/978-3-540-77535-5_5
// TODO: turn integer constants into complex expressions
for (auto I = BB.begin(); I != BB.end(); ++I) {
const auto icmp_op = llvm::dyn_cast<llvm::ICmpInst>(I);
if (!icmp_op || !icmp_op->getType()->isIntegerTy()) {
// if its not an integer comparison, go to next instruction
continue;
}
// if we do not have two operands
if (icmp_op->getNumOperands() != 2) {
continue;
}
const auto x = icmp_op->getOperand(0);
const auto y = icmp_op->getOperand(1);
const auto x_value = llvm::dyn_cast<llvm::ConstantInt>(x);
const auto y_value = llvm::dyn_cast<llvm::ConstantInt>(y);
// if neither are const integers
if (!x_value && !y_value) {
continue;
}
const int value_replace_index = (x_value) ? 0 : 1;
const auto value_replace = (value_replace_index == 0) ? x_value : y_value;
const auto same = (value_replace_index == 0) ? y : x;
const auto int_type = value_replace->getType();
llvm::IRBuilder<> builder(icmp_op);
// std::vector<llvm::Value *> vars{llvm::ConstantInt::get(int_type, std::rand() % 255), same};
std::vector<llvm::Value *> vars{llvm::ConstantInt::get(int_type, std::rand() % 255), same, llvm::ConstantInt::get(int_type, std::rand() % 255)};
// std::vector<llvm::Value *> vars{llvm::ConstantInt::get(int_type, std::rand() % 255), same, llvm::ConstantInt::get(int_type, std::rand() % 255), llvm::ConstantInt::get(int_type, std::rand() % 255)};
const auto zero_expr = obfus::GenerateRandomMBAIdentity(builder, int_type, vars);
if (value_replace->getSExtValue() == 0) {
icmp_op->setOperand(value_replace_index, zero_expr);
} else {
icmp_op->setOperand(value_replace_index, GetObfuscatedValue(builder, zero_expr, value_replace));
}
changed = true;
#ifdef DEBUG
llvm::errs() << "Replaced constant: " << value_replace->getSExtValue() << "\n";
#endif
}
return changed;
}
/*
Source: https://github.com/chenx6/baby_obfuscator/blob/master/src/Flattening.cpp
Copyright (c) 2020 chen_null
Adjusted to fit the Google C++ style guide
*/
bool TransformFlatten(llvm::Function &F) {
// Only one BB in this Function
if (F.size() <= 1) {
return false;
}
// Insert All BB into original_bb
llvm::SmallVector<llvm::BasicBlock *, 0> original_bb;
for (auto &BB : F) {
original_bb.emplace_back(&BB);
if (llvm::isa<llvm::InvokeInst>(BB.getTerminator())) {
return false;
}
}
// Remove first BB
original_bb.erase(original_bb.begin());
// If first_bb's terminator is BranchInst, then split into two blocks
const auto first_bb = &*F.begin();
const auto first_bb_terminator = first_bb->getTerminator();
if (llvm::isa<llvm::BranchInst>(first_bb_terminator) ||
llvm::isa<llvm::IndirectBrInst>(first_bb_terminator)) {
llvm::BasicBlock::iterator iter = first_bb->end();
if (first_bb->size() > 1) {
--iter;
}
const auto temp_bb = first_bb->splitBasicBlock(--iter);
original_bb.insert(original_bb.begin(), temp_bb);
}
// Remove first_bb
first_bb->getTerminator()->eraseFromParent();
// Create main loop
const auto loop_entry = llvm::BasicBlock::Create(F.getContext(), "Entry", &F);
const auto loop_end = llvm::BasicBlock::Create(F.getContext(), "End", &F);
const auto sw_default = llvm::BasicBlock::Create(F.getContext(), "Default", &F);
// Create switch variable
llvm::IRBuilder<> entry_builder(first_bb, first_bb->end());
const auto sw_ptr = entry_builder.CreateAlloca(entry_builder.getInt32Ty());
const auto store_rng = entry_builder.CreateStore(entry_builder.getInt32(std::rand()), sw_ptr);
entry_builder.CreateBr(loop_entry);
// Create switch statement
llvm::IRBuilder<> sw_builder(loop_entry);
const auto sw_inst = sw_builder.CreateSwitch(sw_builder.CreateLoad(sw_ptr), sw_default, 0);
llvm::BranchInst::Create(loop_entry, sw_default);
llvm::BranchInst::Create(loop_entry, loop_end);
// Put all BB into switch Instruction
// using a ref here makes no sense because orginal_bb already uses pointers
for (const auto BB : original_bb) {
BB->moveBefore(loop_end);
sw_inst->addCase(sw_builder.getInt32(std::rand()), BB);
}
// Recalculate switch Instruction
for (const auto BB : original_bb) {
switch (BB->getTerminator()->getNumSuccessors()) {
case 0:
// No terminator
break;
case 1: {
// Terminator is a non-condition jump
const auto terminator = BB->getTerminator();
// Find successor's case condition
auto case_num = sw_inst->findCaseDest(terminator->getSuccessor(0));
if (case_num == nullptr) {
case_num = sw_builder.getInt32(std::rand());
}
// Connect this BB to successor
llvm::IRBuilder<> case_builder(BB, BB->end());
case_builder.CreateStore(case_num, sw_ptr);
case_builder.CreateBr(loop_end);
terminator->eraseFromParent();
} break;
case 2: {
// Terminator is a condition jump
const auto terminator = BB->getTerminator();
auto truecase_num = sw_inst->findCaseDest(terminator->getSuccessor(0));
auto falsecase_num = sw_inst->findCaseDest(terminator->getSuccessor(1));
if (truecase_num == nullptr) {
truecase_num = sw_builder.getInt32(std::rand());
}
if (falsecase_num == nullptr) {
falsecase_num = sw_builder.getInt32(std::rand());
}
llvm::IRBuilder<> case_builder(BB, BB->end());
if (llvm::BranchInst *endBr = llvm::dyn_cast<llvm::BranchInst>(BB->getTerminator())) {
// Select the next BB to be executed
case_builder.CreateStore(case_builder.CreateSelect(endBr->getCondition(), truecase_num, falsecase_num), sw_ptr);
case_builder.CreateBr(loop_end);
terminator->eraseFromParent();
}
} break;
}
}
// Set sw_var's origin value, let the first BB executed first
store_rng->setOperand(0, sw_inst->findCaseDest(*original_bb.begin()));
// Demote register and phi to memory
kReg2MemPass->runOnFunction(F);
#ifdef DEBUG
llvm::errs() << "Flattened: " << F.getName() << "!\n";
#endif
return true;
}
} // namespace obfus