-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscvheos.c
1408 lines (1164 loc) · 44.4 KB
/
scvheos.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2020 Christian Reinhardt
*
* This file proves an interface for the SCvH equation of state (Saumon et al. 1995) for Hydrogen
* and Helium that was extended to lower temperatures by Vazan et al. (2013).
*
* Author: Christian Reinhardt
* Created: 02.04.2020
* Modified: 03.10.2022
*/
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_interp2d.h>
#include <gsl/gsl_roots.h>
#include "scvheos.h"
/*
* Initalize a material.
*
* Initialize the material data, read the EOS tables and convert them to code units if desired.
*/
SCVHEOSMAT *scvheosInitMaterial(int iMat, double dKpcUnit, double dMsolUnit) {
const double KBOLTZ = 1.38e-16; /* bolzman constant in cgs */
const double MHYDR = 1.67e-24; /* mass of hydrogen atom in grams */
const double MSOLG = 1.99e33; /* solar mass in grams */
const double GCGS = 6.67e-8; /* G in cgs */
const double KPCCM = 3.085678e21; /* kiloparsec in centimeters */
const double NA = 6.022e23; /* Avogadro's number */
SCVHEOSMAT *Mat;
int nRho;
int nT;
char inFile[256];
int nSkip;
/* GSL interpolator type */
const gsl_interp2d_type *InterpType;
int bInterpBilinear = 1;
/*
* Allocate memory and initialize the data.
*
* Memory for the EOS tables is allocated in scvheosReadTable. The number of data points nRho
* and nT are set in the function if the table was read correctly.
*/
Mat = (SCVHEOSMAT *) calloc(1, sizeof(SCVHEOSMAT));
assert(Mat != NULL);
Mat->iMat = iMat;
Mat->dKpcUnit = dKpcUnit;
Mat->dMsolUnit = dMsolUnit;
Mat->nRho = 0;
Mat->nT = 0;
Mat->dLogBase = 10.0;
/* Set the reference density for ballic. */
Mat->rho0 = 1e-3;
/*
* Load the EOS table.
*/
switch(iMat)
{
case SCVHEOS_H:
/*
* Hydrogen.
*/
strcpy(inFile, "scvh_h_dt_cgs.txt");
nRho = 201;
nT = 100;
nSkip = 1;
strcpy(Mat->MatString, "Material not implemented yet.");
break;
case SCVHEOS_HE:
/*
* Helium.
*/
strcpy(inFile, "scvh_he_dt_cgs.txt");
nRho = 201;
nT = 100;
nSkip = 1;
strcpy(Mat->MatString, "Material not implemented yet.");
break;
case SCVHEOS_HHE:
/*
* Hydrogen / Helium mixture in Solar abundance.
*/
strcpy(inFile, "scvh_hhe_y0.275_dt_cgs.txt");
nRho = 201;
nT = 100;
nSkip = 1;
strcpy(Mat->MatString, "Material not implemented yet.");
break;
case SCVHEOS_HHE_LOWRHOT:
/*
* Hydrogen / Helium mixture in Solar abundance limited to low rho and T.
*/
strcpy(inFile, "scvh_hhe_y0.275_dt_cgs_lowrhot.txt");
nRho = 80;
nT = 48;
nSkip = 2;
strcpy(Mat->MatString, "SCvH EOS H-He Y=0.275 (Saumon et al. 1995, Vazan et al. 2013).");
break;
case SCVHEOS_HHE_EXT_LOWRHOT:
/*
* Hydrogen / Helium mixture (X=0.722, Y=0.278) based on the extended EOS tables
* limited to low rho and T.
*/
strcpy(inFile, "scvh_extended_dt_hydrogen_722_helium_278_lowrhot.txt");
nRho = 201;
nT = 31;
nSkip = 2;
strcpy(Mat->MatString, "SCvH EOS H-He X=0.722 Y=0.278 (Saumon et al. 1995, Vazan et al. 2013).");
break;
default:
/* Unknown material */
scvheosFinalizeMaterial(Mat);
assert(0);
}
/* Currently only SCVHEOS_HHE_EXT_LOWRHOT works. */
assert(iMat == SCVHEOS_HHE_EXT_LOWRHOT);
/*
* Allocate memory and read the EOS table.
*/
if (scvheosReadTable(Mat, inFile, nRho, nT, nSkip) != SCVHEOS_SUCCESS) {
fprintf(stderr, "SCVH EOS: Could not open EOS table %s.\n", inFile);
scvheosFinalizeMaterial(Mat);
exit(1);
}
/* Define limits of the table (or extrapolation). */
#if 0
Mat->LogRhoMin = -25.0;
Mat->LogRhoMax = 3.0;
Mat->LogTMin = -2;
Mat->LogTMax = 6;
#endif
#if 0
//Mat->LogRhoMin = -10.5;
Mat->LogRhoMin = -18.0;
Mat->LogRhoMax = -0.9;
Mat->LogTMin = -2.0;
Mat->LogTMax = 4.7;
#endif
#if 0
Mat->LogRhoMin = Mat->dLogRhoAxis[0];
Mat->LogRhoMax = Mat->dLogRhoAxis[Mat->nRho-1];
Mat->LogTMin = Mat->dLogTAxis[0];
//Mat->LogTMax = Mat->dLogTAxis[Mat->nT-1];
Mat->LogTMax = 3.6;
#endif
Mat->LogRhoMin = -25.0;
Mat->LogRhoMax = 1.0;
Mat->LogTMin = -1;
Mat->LogTMax = 4;
/*
* Convert from cgs to code units.
*/
if ((Mat->dKpcUnit > 0.0) && (Mat->dMsolUnit > 0.0)) {
Mat->dGasConst = Mat->dKpcUnit*KPCCM*KBOLTZ
/MHYDR/GCGS/Mat->dMsolUnit/MSOLG;
/* code energy per unit mass --> erg per g */
Mat->dErgPerGmUnit = GCGS*Mat->dMsolUnit*MSOLG/(Mat->dKpcUnit*KPCCM);
/* code density --> g per cc */
Mat->dGmPerCcUnit = (Mat->dMsolUnit*MSOLG)/pow(Mat->dKpcUnit*KPCCM,3.0);
/* code time --> seconds */
Mat->dSecUnit = sqrt(1/(Mat->dGmPerCcUnit*GCGS));
for (int i=0; i<Mat->nRho; i++) {
Mat->dLogRhoAxis[i] -= log10(Mat->dGmPerCcUnit);
}
for (int i=0; i<Mat->nT; i++) {
for (int j=0; j<Mat->nRho; j++) {
Mat->dLogPArray[j*Mat->nT+i] -= log10(Mat->dErgPerGmUnit*Mat->dGmPerCcUnit);
Mat->dLogUArray[j*Mat->nT+i] -= log10(Mat->dErgPerGmUnit);
Mat->dLogSArray[j*Mat->nT+i] -= log10(Mat->dErgPerGmUnit);
}
}
/* Convert table limits and reference density. */
Mat->LogRhoMin -= log10(Mat->dGmPerCcUnit);
Mat->LogRhoMax -= log10(Mat->dGmPerCcUnit);
Mat->rho0 /= Mat->dGmPerCcUnit;
} else {
/* Prevent problems if dKpcUnit or dMsolUnit are not set. */
Mat->dGasConst = 0.0;
Mat->dErgPerGmUnit = 1.0;
Mat->dGmPerCcUnit = 1.0;
Mat->dSecUnit = 1.0;
}
/*
* Initialize the GSL interpolator.
*/
if (bInterpBilinear) {
InterpType = gsl_interp2d_bilinear;
} else {
InterpType = gsl_interp2d_bicubic;
}
Mat->xAccP = gsl_interp_accel_alloc();
Mat->yAccP = gsl_interp_accel_alloc();
Mat->xAccU = gsl_interp_accel_alloc();
Mat->yAccU = gsl_interp_accel_alloc();
Mat->xAccS = gsl_interp_accel_alloc();
Mat->yAccS = gsl_interp_accel_alloc();
Mat->xAccCs = gsl_interp_accel_alloc();
Mat->yAccCs = gsl_interp_accel_alloc();
/* x corresponts to T and y corresponds to rho. */
Mat->InterpLogP = gsl_interp2d_alloc(InterpType, Mat->nT, Mat->nRho);
Mat->InterpLogU = gsl_interp2d_alloc(InterpType, Mat->nT, Mat->nRho);
Mat->InterpLogS = gsl_interp2d_alloc(InterpType, Mat->nT, Mat->nRho);
Mat->InterpLogCs = gsl_interp2d_alloc(InterpType, Mat->nT, Mat->nRho);
gsl_interp2d_init(Mat->InterpLogP, Mat->dLogTAxis, Mat->dLogRhoAxis, Mat->dLogPArray, Mat->nT, Mat->nRho);
gsl_interp2d_init(Mat->InterpLogU, Mat->dLogTAxis, Mat->dLogRhoAxis, Mat->dLogUArray, Mat->nT, Mat->nRho);
gsl_interp2d_init(Mat->InterpLogS, Mat->dLogTAxis, Mat->dLogRhoAxis, Mat->dLogSArray, Mat->nT, Mat->nRho);
/* The sound speed can only be calculated after the interpolation in P and u is initialized. */
if (scvheosGenerateSoundSpeedTable(Mat) != SCVHEOS_SUCCESS) {
fprintf(stderr, "scvheosInitMaterial: Could not generate table for sound speed.\n");
exit(1);
}
gsl_interp2d_init(Mat->InterpLogCs, Mat->dLogTAxis, Mat->dLogRhoAxis, Mat->dLogCArray, Mat->nT, Mat->nRho);
return Mat;
}
/*
* Free memory.
*/
int scvheosFinalizeMaterial(SCVHEOSMAT *Mat) {
if (Mat != NULL) {
if (Mat->dLogRhoAxis != NULL) free(Mat->dLogRhoAxis);
if (Mat->dLogTAxis != NULL) free(Mat->dLogTAxis);
if (Mat->dLogUArray != NULL) free(Mat->dLogUArray);
if (Mat->dLogPArray != NULL) free(Mat->dLogPArray);
if (Mat->dLogSArray != NULL) free(Mat->dLogSArray);
if (Mat->dLogCArray != NULL) free(Mat->dLogCArray);
free(Mat);
}
return SCVHEOS_SUCCESS;
}
/*
* Read an EOS table from a file.
*
* The function also allocates memory of the tables and sets nRho and nT.
*
* SCVHEOS:
*
* H: nRho = 201, nT = 100, logarithmic spacing (base 10)
* He: nRho = 201, nT = 100, logarithmic spacing (base 10)
* H/He: nRho = 201, nT = 100, logarithmic spacing (base 10)
*/
int scvheosReadTable(SCVHEOSMAT *Mat, char *chInFile, int nRho, int nT, int nSkip) {
FILE *fp;
char *chLine;
size_t nCharMax = 256;
int iRet;
int i, j;
if (Mat == NULL) {
return SCVHEOS_FAIL;
}
if ((Mat->dLogRhoAxis != NULL) || (Mat->dLogTAxis != NULL) || (Mat->dLogUArray != NULL) ||
(Mat->dLogPArray != NULL) || (Mat->dLogSArray != NULL)) {
return SCVHEOS_FAIL;
}
Mat->dLogRhoAxis = (double *) calloc(nRho, sizeof(double));
Mat->dLogTAxis = (double *) calloc(nT, sizeof(double));
/* The GSL interpolation functions require the tables are 1D arrays. */
Mat->dLogUArray = (double *) calloc(nT*nRho, sizeof(double));
Mat->dLogPArray = (double *) calloc(nT*nRho, sizeof(double));
Mat->dLogSArray = (double *) calloc(nT*nRho, sizeof(double));
if ((Mat->dLogRhoAxis == NULL) || (Mat->dLogTAxis == NULL) || (Mat->dLogUArray == NULL) ||
(Mat->dLogPArray == NULL) || (Mat->dLogSArray == NULL)) {
return SCVHEOS_FAIL;
}
chLine = (char *) calloc(nCharMax, sizeof(char));
/* Open the file and skip the first few lines. */
fp = fopen(chInFile, "r");
if (fp == NULL) {
return SCVHEOS_FAIL;
}
for (i=0; i<nSkip; i++) {
if (getline(&chLine, &nCharMax, fp) == -1) {
return SCVHEOS_FAIL;
}
}
for (i=0; i<nT; i++) {
for (j=0; j<nRho; j++) {
if (getline(&chLine, &nCharMax, fp) == -1) {
return SCVHEOS_FAIL;
}
/* We store the data as A[T][rho]. */
iRet = sscanf(chLine, "%lf %lf %lf %lf %lf", &Mat->dLogTAxis[i], &Mat->dLogRhoAxis[j],
&Mat->dLogPArray[j*nT+i],
&Mat->dLogUArray[j*nT+i],
&Mat->dLogSArray[j*nT+i]);
/* Check if the number of matches is correct. */
if (iRet != 5) {
return SCVHEOS_FAIL;
}
if ((pow(Mat->dLogBase, Mat->dLogRhoAxis[j]) < 0.0) ||
(pow(Mat->dLogBase, Mat->dLogTAxis[i]) < 0.0) ||
(pow(Mat->dLogBase, Mat->dLogUArray[j*nT+i]) < 0.0) ||
(pow(Mat->dLogBase, Mat->dLogSArray[j*nT+i]) < 0.0)) {
return SCVHEOS_FAIL;
}
}
}
fclose(fp);
free(chLine);
Mat->nRho = nRho;
Mat->nT = nT;
return SCVHEOS_SUCCESS;
}
/*
* Generate an array that contains the sound speed at each EOS table data point.
*
* The sound speed is calculated from
*
* cs^2 = dP/drho + T/(rho^2*C_v)*(dP/dT)^2
*
* where
*
* c_v = du/dT
*
* is the specific heat capacity at constant volume. The derivatives are obtained
* numerically.
*/
int scvheosGenerateSoundSpeedTable(SCVHEOSMAT *Mat) {
double rho;
double T;
double dPdrho;
double dPdT;
double cv;
double cs2;
if (Mat == NULL)
return SCVHEOS_FAIL;
if ((Mat->dLogRhoAxis == NULL) || (Mat->dLogTAxis == NULL))
return SCVHEOS_FAIL;
if (Mat->dLogCArray != NULL)
return SCVHEOS_FAIL;
/* The GSL interpolation functions require the tables are 1D arrays. */
Mat->dLogCArray = (double *) calloc(Mat->nT*Mat->nRho, sizeof(double));
if (Mat->dLogCArray == NULL)
return SCVHEOS_FAIL;
for (int i=0; i<Mat->nT; i++) {
for (int j=0; j<Mat->nRho; j++) {
rho = pow(Mat->dLogBase, Mat->dLogRhoAxis[j]);
T = pow(Mat->dLogBase, Mat->dLogTAxis[i]);
dPdrho = scvheosdPdRhoofRhoT(Mat, rho, T);
dPdT = scvheosdPdTofRhoT(Mat, rho, T);
cv = scvheosdUdTofRhoT(Mat, rho, T);
/* Use log(rho^2) = 2*log(rho). */
cs2 = dPdrho + T/(rho*rho*cv)*dPdT*dPdT;
assert(!isinf(cs2));
assert(cs2 > 0.0);
Mat->dLogCArray[j*Mat->nT+i] = log10(sqrt(cs2));
}
}
return SCVHEOS_SUCCESS;
}
// Functions that have to be implemented or added
// We also need derivatives to calculate the sound speed (maybe do this once and make a table)?
/*
* Calculate logP(logrho, logT).
*/
double scvheosLogPofLogRhoLogT(SCVHEOSMAT *Mat, double logrho, double logT) {
double logP;
if ((logrho < Mat->LogRhoMin) || (logrho > Mat->LogRhoMax) || (logT < Mat->LogTMin) || (logT > Mat->LogTMax)) {
fprintf(stderr, "scvheosLogPofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
if (gsl_interp2d_eval_e_extrap(Mat->InterpLogP, Mat->dLogTAxis, Mat->dLogRhoAxis, Mat->dLogPArray, logT, logrho,
Mat->xAccP, Mat->yAccP, &logP) != GSL_SUCCESS) {
fprintf(stderr, "scvheosLogPofLogRhoLogT: Interpolation failed (logrho= %15.7E logT= %15.7E).\n", logrho, logT);
exit(1);
}
return logP;
}
/*
* Calculate logU(logrho, logT).
*/
double scvheosLogUofLogRhoLogT(SCVHEOSMAT *Mat, double logrho, double logT) {
double logu;
if ((logrho < Mat->LogRhoMin) || (logrho > Mat->LogRhoMax) || (logT < Mat->LogTMin) || (logT > Mat->LogTMax)) {
fprintf(stderr, "scvheosLogUofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
if (gsl_interp2d_eval_e_extrap(Mat->InterpLogU, Mat->dLogTAxis, Mat->dLogRhoAxis, Mat->dLogUArray, logT, logrho,
Mat->xAccU, Mat->yAccU, &logu) != GSL_SUCCESS) {
fprintf(stderr, "scvheosLogUofLogRhoLogT: Interpolation failed (logrho= %15.7E logT= %15.7E).\n", logrho, logT);
exit(1);
}
return logu;
}
/*
* Calculate logs(logrho, logT).
*/
double scvheosLogSofLogRhoLogT(SCVHEOSMAT *Mat, double logrho, double logT) {
double logs;
if ((logrho < Mat->LogRhoMin) || (logrho > Mat->LogRhoMax) || (logT < Mat->LogTMin) || (logT > Mat->LogTMax)) {
fprintf(stderr, "scvheosLogSofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
if (gsl_interp2d_eval_e_extrap(Mat->InterpLogS, Mat->dLogTAxis, Mat->dLogRhoAxis, Mat->dLogSArray, logT, logrho,
Mat->xAccS, Mat->yAccS, &logs) != GSL_SUCCESS) {
fprintf(stderr, "scvheosLogSofLogRhoLogT: Interpolation failed (logrho= %15.7E logT= %15.7E).\n", logrho, logT);
exit(1);
}
return logs;
}
/*
* Calculate logcs(logrho, logT).
*/
double scvheosLogCsofLogRhoLogT(SCVHEOSMAT *Mat, double logrho, double logT) {
double logcs;
if ((logrho < Mat->LogRhoMin) || (logrho > Mat->LogRhoMax) || (logT < Mat->LogTMin) || (logT > Mat->LogTMax)) {
fprintf(stderr, "scvheosLogCsofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
if (gsl_interp2d_eval_e_extrap(Mat->InterpLogCs, Mat->dLogTAxis, Mat->dLogRhoAxis, Mat->dLogCArray, logT, logrho,
Mat->xAccCs, Mat->yAccCs, &logcs) != GSL_SUCCESS) {
fprintf(stderr, "scvheosLogCsofLogRhoLogT: Interpolation failed (logrho= %15.7E logT= %15.7E).\n", logrho, logT);
exit(1);
}
return logcs;
}
/*
* Calculate the pressure P(rho, T).
*/
double scvheosPofRhoT(SCVHEOSMAT *Mat, double rho, double T) {
double logrho;
double logT;
double P;
logrho = log10(rho);
logT = log10(T);
/* Interpolate in the table. */
P = pow(Mat->dLogBase, scvheosLogPofLogRhoLogT(Mat, logrho, logT));
return P;
}
/*
* Calculate the internal energy u(rho, T).
*/
double scvheosUofRhoT(SCVHEOSMAT *Mat, double rho, double T) {
double logrho;
double logT;
double u;
logrho = log10(rho);
logT = log10(T);
u = pow(Mat->dLogBase, scvheosLogUofLogRhoLogT(Mat, logrho, logT));
return u;
}
/*
* Calculate the entropy s(rho, T).
*/
double scvheosSofRhoT(SCVHEOSMAT *Mat, double rho, double T) {
double logrho;
double logT;
double s;
logrho = log10(rho);
logT = log10(T);
/* Interpolate in the table. */
s = pow(Mat->dLogBase, scvheosLogSofLogRhoLogT(Mat, logrho, logT));
return s;
}
/*
* Calculate the sound speed cs(rho, T).
*/
double scvheosCsofRhoT(SCVHEOSMAT *Mat, double rho, double T) {
double logrho;
double logT;
double Cs;
logrho = log10(rho);
logT = log10(T);
Cs = pow(Mat->dLogBase, scvheosLogCsofLogRhoLogT(Mat, logrho, logT));
return Cs;
}
/*
* Calculate the pressure P(rho, u).
*/
double scvheosPofRhoU(SCVHEOSMAT *Mat, double rho, double u) {
double logrho;
double logu;
double logT;
double P;
logrho = log10(rho);
logu = log10(u);
/* Calculate logT. */
logT = scvheosLogTofLogRhoLogU(Mat, logrho, logu);
/* Interpolate in the table. */
P = pow(Mat->dLogBase, scvheosLogPofLogRhoLogT(Mat, logrho, logT));
// CR
assert(P > 0.0);
return P;
}
/*
* Calculate the sound speed cs(rho, u).
*/
double scvheosCsofRhoU(SCVHEOSMAT *Mat, double rho, double u) {
double logrho;
double logu;
double logT;
double Cs;
logrho = log10(rho);
logu = log10(u);
/* Calculate logT. */
logT = scvheosLogTofLogRhoLogU(Mat, logrho, logu);
Cs = pow(Mat->dLogBase, scvheosLogCsofLogRhoLogT(Mat, logrho, logT));
return Cs;
}
/*
* Calculate the temperature logT(logrho, logu).
*/
double scvheosLogTofLogRhoLogU(SCVHEOSMAT *Mat, double logrho, double logu) {
/* GSL root finder */
gsl_root_fsolver *Solver;
const gsl_root_fsolver_type *SolverType;
gsl_function F;
struct LogUofLogRhoLogT_GSL_Params Params;
const double err_abs = 0.0;
const double err_rel = 1e-10;
int status;
int max_iter = 1000;
double logT_min, logT_max;
double logT = 0.0;
/* Initialize the parameters. */
Params.Mat = Mat;
Params.logrho = logrho;
Params.logu = logu;
/* Initialize the function used for root finding. */
F.function = &LogUofLogRhoLogT_GSL_rootfinder;
F.params = &Params;
/* Initialize the root finder. */
SolverType = gsl_root_fsolver_brent;
SolverType = gsl_root_fsolver_bisection;
Solver = gsl_root_fsolver_alloc(SolverType);
assert(Solver != NULL);
/* Set minimum and maximum temperature. */
logT_min = Mat->LogTMin;
logT_max = Mat->LogTMax;
/* Check if logu < logu(logrho, logT_min) or logu > logu(logrho, logT_max) and set a minimum or maximum value. */
#if 0
if (logu < scvheosLogUofLogRhoLogT(Mat, logrho, logT_min)) return logT_min;
if (logu > scvheosLogUofLogRhoLogT(Mat, logrho, logT_max)) return logT_max;
#endif
/*
/// CR: Careful, this assumes that u(T) is monotonic AND u(T_min) < u(T_max)
if (logu < scvheosLogUofLogRhoLogT(Mat, logrho, logT_min)) assert(logu >= scvheosLogUofLogRhoLogT(Mat, logrho, logT_min));
if (logu > scvheosLogUofLogRhoLogT(Mat, logrho, logT_max)) assert(logu <= scvheosLogUofLogRhoLogT(Mat, logrho, logT_max));
*/
/* Make sure the root is bracketed.*/
if (LogUofLogRhoLogT_GSL_rootfinder(logT_min, &Params)*LogUofLogRhoLogT_GSL_rootfinder(logT_max, &Params) > 0.0) {
// CR: 04.10.2022
fprintf(stderr, "scvheosLogTofLogRhoLogU:\n");
fprintf(stderr, "logrho= %g ", logrho);
fprintf(stderr, "logu= %g\n", logu);
fprintf(stderr, "LogTMin= %g ", Mat->LogTMin);
fprintf(stderr, "LogTMax= %g\n", Mat->LogTMax);
fprintf(stderr, "loguMin= %g\n", scvheosLogUofLogRhoLogT(Mat, logrho, Mat->LogTMin));
fprintf(stderr, "loguMax= %g\n", scvheosLogUofLogRhoLogT(Mat, logrho, Mat->LogTMax));
fprintf(stderr, "loguMax= %g\n", LogUofLogRhoLogT_GSL_rootfinder(logT_min, &Params)*LogUofLogRhoLogT_GSL_rootfinder(logT_max, &Params));
fprintf(stderr, "Could not bracket root.\n");
assert(0);
}
gsl_root_fsolver_set(Solver, &F, logT_min, logT_max);
for (int i=0; i<max_iter; i++) {
/* Do one iteration of the root solver. */
status = gsl_root_fsolver_iterate(Solver);
/* Estimate of the root. */
logT = gsl_root_fsolver_root(Solver);
/* Current interval that brackets the root. */
logT_min = gsl_root_fsolver_x_lower(Solver);
logT_max = gsl_root_fsolver_x_upper(Solver);
/* Test for convergence. */
status = gsl_root_test_interval(logT_min, logT_max, err_abs, err_rel);
#if 0
if (status == GSL_SUCCESS)
fprintf(stderr, "Converged: x= %g\n", x);
#endif
if (status != GSL_CONTINUE) break;
}
if (status != GSL_SUCCESS) logT = -1.0;
gsl_root_fsolver_free(Solver);
return logT;
}
/*
* Calculate the temperature logT(logrho, logs).
*/
double scvheosLogTofLogRhoLogS(SCVHEOSMAT *Mat, double logrho, double logs) {
/* GSL root finder */
gsl_root_fsolver *Solver;
const gsl_root_fsolver_type *SolverType;
gsl_function F;
struct LogSofLogRhoLogT_GSL_Params Params;
const double err_abs = 0.0;
const double err_rel = 1e-10;
int status;
int max_iter = 1000;
double logT_min, logT_max;
double logT = 0.0;
/* Initialize the parameters. */
Params.Mat = Mat;
Params.logrho = logrho;
Params.logs = logs;
/* Initialize the function used for root finding. */
F.function = &LogSofLogRhoLogT_GSL_rootfinder;
F.params = &Params;
/* Initialize the root finder. */
SolverType = gsl_root_fsolver_brent;
SolverType = gsl_root_fsolver_bisection;
Solver = gsl_root_fsolver_alloc(SolverType);
assert(Solver != NULL);
/* Set minimum and maximum temperature. */
logT_min = Mat->LogTMin;
logT_max = Mat->LogTMax;
/* Check if logs < logs(logrho, logT_min) or logs > logs(logrho, logT_max) and set a minimum or maximum value. */
if (logs < scvheosLogSofLogRhoLogT(Mat, logrho, logT_min)) return logT_min;
if (logs > scvheosLogSofLogRhoLogT(Mat, logrho, logT_max)) return logT_max;
/* Make sure the root is bracketed.*/
if (LogSofLogRhoLogT_GSL_rootfinder(logT_min, &Params)*LogSofLogRhoLogT_GSL_rootfinder(logT_max, &Params) > 0.0) {
fprintf(stderr, "Could not bracket root.\n");
assert(0);
}
gsl_root_fsolver_set(Solver, &F, logT_min, logT_max);
for (int i=0; i<max_iter; i++) {
/* Do one iteration of the root solver. */
status = gsl_root_fsolver_iterate(Solver);
/* Estimate of the root. */
logT = gsl_root_fsolver_root(Solver);
/* Current interval that brackets the root. */
logT_min = gsl_root_fsolver_x_lower(Solver);
logT_max = gsl_root_fsolver_x_upper(Solver);
/* Test for convergence. */
status = gsl_root_test_interval(logT_min, logT_max, err_abs, err_rel);
#if 0
if (status == GSL_SUCCESS)
fprintf(stderr, "Converged: x= %g\n", x);
#endif
if (status != GSL_CONTINUE) break;
}
if (status != GSL_SUCCESS) logT = -1.0;
gsl_root_fsolver_free(Solver);
return logT;
}
/*
* Calculate the density logrho(logP, logT).
*/
double scvheosLogRhoofLogPLogT(SCVHEOSMAT *Mat, double logP, double logT) {
/* GSL root finder */
gsl_root_fsolver *Solver;
const gsl_root_fsolver_type *SolverType;
gsl_function F;
struct LogPofLogRhoLogT_GSL_Params Params;
const double err_abs = 0.0;
const double err_rel = 1e-10;
int status;
int max_iter = 1000;
double logrho_min, logrho_max;
double logrho = 0.0;
/* Initialize the parameters. */
Params.Mat = Mat;
Params.logT = logT;
Params.logP = logP;
/* Initialize the function used for root finding. */
F.function = &LogPofLogRhoLogT_GSL_rootfinder;
F.params = &Params;
/* Initialize the root finder. */
SolverType = gsl_root_fsolver_brent;
SolverType = gsl_root_fsolver_bisection;
Solver = gsl_root_fsolver_alloc(SolverType);
assert(Solver != NULL);
/* Set minimum and maximum density. */
logrho_min = Mat->LogRhoMin;
logrho_max = Mat->LogRhoMax;
/* Make sure the root is bracketed.*/
if (LogPofLogRhoLogT_GSL_rootfinder(logrho_min, &Params)*LogPofLogRhoLogT_GSL_rootfinder(logrho_max, &Params) > 0.0) {
fprintf(stderr, "Could not bracket root.\n");
assert(0);
}
gsl_root_fsolver_set(Solver, &F, logrho_min, logrho_max);
for (int i=0; i<max_iter; i++) {
/* Do one iteration of the root solver. */
status = gsl_root_fsolver_iterate(Solver);
/* Estimate of the root. */
logrho = gsl_root_fsolver_root(Solver);
/* Current interval that brackets the root. */
logrho_min = gsl_root_fsolver_x_lower(Solver);
logrho_max = gsl_root_fsolver_x_upper(Solver);
/* Test for convergence. */
status = gsl_root_test_interval(logrho_min, logrho_max, err_abs, err_rel);
#if 0
if (status == GSL_SUCCESS)
fprintf(stderr, "Converged: x= %g\n", x);
#endif
if (status != GSL_CONTINUE) break;
}
if (status != GSL_SUCCESS) logrho = -1.0;
gsl_root_fsolver_free(Solver);
return logrho;
}
/*
* Calculate the temperature T(rho, u).
*/
double scvheosTofRhoU(SCVHEOSMAT *Mat, double rho, double u) {
double logrho;
double logu;
double T;
logrho = log10(rho);
logu = log10(u);
T = pow(Mat->dLogBase, scvheosLogTofLogRhoLogU(Mat, logrho, logu));
return T;
}
/*
* Calculate the temperature T(rho, s).
*/
double scvheosTofRhoS(SCVHEOSMAT *Mat, double rho, double s) {
double logrho;
double logs;
double T;
logrho = log10(rho);
logs = log10(s);
T = pow(Mat->dLogBase, scvheosLogTofLogRhoLogS(Mat, logrho, logs));
return T;
}
/*
* Calculate the density rho(P, T).
*/
double scvheosRhoofPT(SCVHEOSMAT *Mat, double P, double T) {
double logP;
double logT;
double rho;
logP = log10(P);
logT = log10(T);
rho = pow(Mat->dLogBase, scvheosLogRhoofLogPLogT(Mat, logP, logT));
return rho;
}
/*
* Calculate the derivative dlogP/dlogrho(logrho, logT).
*/
double scvheosdLogPdLogRhoofLogRhoLogT(SCVHEOSMAT *Mat, double logrho, double logT) {
/* Finite difference. */
double h = 1e-5*logrho;
double dLogPdLogRho;
if (!scvheosCheckBoundsLogRhoLogT(Mat, logrho, logT)) {
fprintf(stderr, "scvheosdLogPdLogRhoofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
/* If (rho, T) is inside of the EOS table use GSL. */
if (scvheosCheckTableBoundsLogRhoLogT(Mat, logrho, logT)) {
if (gsl_interp2d_eval_deriv_y_e(Mat->InterpLogP, Mat->dLogTAxis, Mat->dLogRhoAxis,
Mat->dLogPArray, logT, logrho, Mat->xAccP, Mat->yAccP, &dLogPdLogRho) == GSL_EDOM) {
fprintf(stderr, "scvheosdLogPdLogRhoofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
return dLogPdLogRho;
}
if ((logrho-h > Mat->LogRhoMin) && (logrho+h < Mat->LogRhoMax)) {
/* Central difference. */
dLogPdLogRho = (scvheosLogPofLogRhoLogT(Mat, logrho+h, logT)-scvheosLogPofLogRhoLogT(Mat, logrho-h, logT))/(2.0*h);
} else if (logrho-h > Mat->LogRhoMin) {
/* Backward finite difference. */
dLogPdLogRho = (scvheosLogPofLogRhoLogT(Mat, logrho, logT) - scvheosLogPofLogRhoLogT(Mat, logrho-h, logT))/h;
} else if (logrho+h < Mat->LogRhoMax) {
/* Forward finite difference. */
dLogPdLogRho = (scvheosLogPofLogRhoLogT(Mat, logrho+h, logT) - scvheosLogPofLogRhoLogT(Mat, logrho, logT))/h;
} else {
/* Both points are problematic so h is reduced. */
h *= 1e-4;
dLogPdLogRho = (scvheosLogPofLogRhoLogT(Mat, logrho+h, logT) - scvheosLogPofLogRhoLogT(Mat, logrho-h, logT))/(2.0*h);
}
return dLogPdLogRho;
}
/*
* Calculate the derivative dlogP/dlogT(logrho, logT).
*/
double scvheosdLogPdLogTofLogRhoLogT(SCVHEOSMAT *Mat, double logrho, double logT) {
/* Finite difference. */
double h = 1e-5*logT;
double dLogPdLogT;
if (!scvheosCheckBoundsLogRhoLogT(Mat, logrho, logT)) {
fprintf(stderr, "scvheosdLogPdLogTofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
/* If (rho, T) is inside of the EOS table use GSL. */
if (scvheosCheckTableBoundsLogRhoLogT(Mat, logrho, logT)) {
if (gsl_interp2d_eval_deriv_x_e(Mat->InterpLogP, Mat->dLogTAxis, Mat->dLogRhoAxis,
Mat->dLogPArray, logT, logrho, Mat->xAccP, Mat->yAccP, &dLogPdLogT) == GSL_EDOM) {
fprintf(stderr, "scvheosdLogPdLogTofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
return dLogPdLogT;
}
if ((logT-h > Mat->LogTMin) && (logT+h < Mat->LogTMax)) {
/* Central difference. */
dLogPdLogT = (scvheosLogPofLogRhoLogT(Mat, logrho, logT+h)-scvheosLogPofLogRhoLogT(Mat, logrho, logT-h))/(2.0*h);
} else if (logT-h > Mat->LogTMin) {
/* Backward finite difference. */
dLogPdLogT = (scvheosLogPofLogRhoLogT(Mat, logrho, logT)-scvheosLogPofLogRhoLogT(Mat, logrho, logT-h))/h;
} else if (logT+h < Mat->LogTMax) {
/* Forward finite difference. */
dLogPdLogT = (scvheosLogPofLogRhoLogT(Mat, logrho, logT+h)-scvheosLogPofLogRhoLogT(Mat, logrho, logT))/h;
} else {
/* Both points are problematic so h is reduced. */
h *= 1e-4;
dLogPdLogT = (scvheosLogPofLogRhoLogT(Mat, logrho, logT+h)-scvheosLogPofLogRhoLogT(Mat, logrho, logT-h))/(2.0*h);
}
return dLogPdLogT;
}
/*
* Calculate the derivative dlogu/dlogrho(logrho, logT).
*/
double scvheosdLogUdLogRhoofLogRhoLogT(SCVHEOSMAT *Mat, double logrho, double logT) {
/* Finite difference. */
double h = 1e-5*logrho;
double dLogUdLogRho;
if (!scvheosCheckBoundsLogRhoLogT(Mat, logrho, logT)) {
fprintf(stderr, "scvheosdLogUdLogRhoofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
/* If (rho, T) is inside of the EOS table use GSL. */
if (scvheosCheckTableBoundsLogRhoLogT(Mat, logrho, logT)) {
if (gsl_interp2d_eval_deriv_y_e(Mat->InterpLogU, Mat->dLogTAxis, Mat->dLogRhoAxis,
Mat->dLogUArray, logT, logrho, Mat->xAccU, Mat->yAccU, &dLogUdLogRho) == GSL_EDOM) {
fprintf(stderr, "scvheosdLogUdLogRhoofLogRhoLogT: logrho= %15.7E logT= %15.7E outside of the EOS table.\n", logrho, logT);
exit(1);
}
return dLogUdLogRho;
}
if ((logrho-h > Mat->LogRhoMin) && (logrho+h < Mat->LogRhoMax)) {
/* Central difference. */
dLogUdLogRho = (scvheosLogUofLogRhoLogT(Mat, logrho+h, logT)-scvheosLogUofLogRhoLogT(Mat, logrho-h, logT))/(2.0*h);
} else if (logrho-h > Mat->LogRhoMin) {
/* Backward finite difference. */
dLogUdLogRho = (scvheosLogUofLogRhoLogT(Mat, logrho, logT)-scvheosLogUofLogRhoLogT(Mat, logrho-h, logT))/h;
} else if (logrho+h < Mat->LogRhoMax) {
/* Forward finite difference. */
dLogUdLogRho = (scvheosLogUofLogRhoLogT(Mat, logrho+h, logT)-scvheosLogUofLogRhoLogT(Mat, logrho, logT))/h;
} else {