-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_parser.py
152 lines (122 loc) · 5.77 KB
/
data_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
'''
Convert raw KITTI data to RGB-D images + pose + camera intrinsics.
'''
import os
import time
import warnings
from functools import partial
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
import matplotlib.pyplot as plt
import png
from mpl_toolkits.mplot3d import Axes3D
import pykitti
from PIL import Image
from network.model import RFMobileNetV2Plus
from network.modules import ABN, decode_segmap
warnings.filterwarnings("ignore")
def main(basedir, date, drive, image_h, image_w, image_ratio):
# Load the data.
dataset = pykitti.raw(basedir, date, drive)
num_of_frames = len(dataset) # default: len(dataset)
if num_of_frames == 0:
return
# Set compress ratio.
image_h_new = int(image_h * image_ratio / 8) * 8
image_w_new = int(image_w * image_ratio / 8) * 8
image_h_seg = int(image_h * max(0.5, image_ratio) / 8) * 8
image_w_seg = int(image_w * max(0.5, image_ratio) / 8) * 8
# We use right RGB camera (cam2) only.
intrinsic_cam2 = dataset.calib.K_cam2
intrinsic_cam2[0, 0] *= image_ratio
intrinsic_cam2[1, 1] *= image_ratio
intrinsic_cam2[0, 2] *= image_ratio
intrinsic_cam2[1, 2] *= image_ratio
if not os.path.exists('data'):
os.makedirs('data')
np.savetxt('data/camera-intrinsics.txt', intrinsic_cam2, delimiter=' ')
# Setup Model.
model = RFMobileNetV2Plus(
n_class=19, in_size=(image_h_seg, image_w_seg), width_mult=1.0,
out_sec=256, aspp_sec=(12, 24, 36),
norm_act=partial(ABN, activation=nn.LeakyReLU(inplace=True)))
model = torch.nn.DataParallel(model, device_ids=[0])
# Note: the fine-tuned model on KIITI will not be provided.
if torch.cuda.is_available():
model = model.cuda()
pre_weight = torch.load('network/checkpoints/kitti.pkl')
else:
pre_weight = torch.load('network/checkpoints/kitti.pkl', map_location='cpu')
pre_weight = pre_weight['model_state']
model.load_state_dict(pre_weight)
model.eval()
print("Performing segmentation...")
for frame_idx in range(num_of_frames):
print("Processing frame {:d}/{:d}".format(frame_idx + 1, num_of_frames))
# Obtain pose.
pose = dataset.oxts[frame_idx].T_w_imu.dot(np.linalg.inv(dataset.calib.T_cam2_imu))
np.savetxt('data/frame-{:06d}.pose.txt'.format(frame_idx), pose, delimiter=' ')
# Obtain Velodyne points and right RGB image.
velo_points = dataset.get_velo(frame_idx)
cam2_image = dataset.get_cam2(frame_idx)
cam2_seg = cam2_image.resize((image_w_seg, image_h_seg), Image.ANTIALIAS)
cam2_image = cam2_image.resize((image_w_new, image_h_new), Image.ANTIALIAS)
cam2_image.save('data/frame-{:06d}.color.jpg'.format(frame_idx))
# Project points to camera.
cam2_points = dataset.calib.T_cam2_velo.dot(velo_points.T).T
# Filter out points behind camera
idx = cam2_points[:, 2] > 0
velo_points = velo_points[idx]
cam2_points = cam2_points[idx]
# Remove homogeneous z.
cam2_points = cam2_points[:, :3] / cam2_points[:, 2:3]
# Apply instrinsics.
cam2_points = intrinsic_cam2.dot(cam2_points.T).T[:, [1, 0]]
cam2_points = cam2_points.astype(int)
# Create depth image.
depth_cam2 = np.zeros((cam2_image.size[1], cam2_image.size[0]))
# Filter out points out of image boundary
idx = (cam2_points[:, 0] >= 0) & (cam2_points[:, 0] < depth_cam2.shape[0]) & (cam2_points[:, 1] >= 0) & (cam2_points[:, 1] < depth_cam2.shape[1])
velo_points = velo_points[idx]
cam2_points = cam2_points[idx]
# Project points onto camera image.
for i in range(cam2_points.shape[0]):
depth_cam2[cam2_points[i, 0], cam2_points[i, 1]] = np.linalg.norm(velo_points[i, :3])
# Convert depth to millimeter.
depth_cam2 = (depth_cam2 * 1000).astype(np.uint16)
with open('data/frame-{:06d}.rawdepth.png'.format(frame_idx), 'wb') as f:
writer = png.Writer(width=depth_cam2.shape[1], height=depth_cam2.shape[0], bitdepth=16, greyscale=True)
writer.write(f, depth_cam2.tolist())
# Compute semantic segmentation for camera image.
cam2_seg = np.array(cam2_seg, dtype=np.float32)
cam2_seg = (cam2_seg - np.mean(cam2_seg, axis=(0, 1))) / 255.0
cam2_seg = np.expand_dims(cam2_seg.transpose(2, 0, 1), 0) # HWC -> NCWH
cam2_seg = torch.from_numpy(cam2_seg).float()
if torch.cuda.is_available():
cam2_seg = cam2_seg.cuda()
with torch.no_grad():
cam2_seg = F.softmax(model(cam2_seg), dim=1)
cam2_seg = torch.unsqueeze(cam2_seg.data.max(1)[1], 0)
cam2_seg = torch.squeeze(F.interpolate(cam2_seg.double(), (image_h_new, image_w_new)), 0).long()
cam2_seg = np.squeeze(cam2_seg.cpu().numpy(), axis=0)
# Mask out dynamic objects.
# Data lable chat: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py
dynamic_mask = (cam2_seg >= 11) & (cam2_seg <= 18)
depth_cam2[dynamic_mask] = 65535
with open('data/frame-{:06d}.depth.png'.format(frame_idx), 'wb') as f:
writer = png.Writer(width=depth_cam2.shape[1], height=depth_cam2.shape[0], bitdepth=16, greyscale=True)
writer.write(f, depth_cam2.tolist())
# Visualize segmentation results.
cam2_seg = decode_segmap(cam2_seg).astype(np.uint8)
cv2.imwrite('data/frame-{:06d}.seg.png'.format(frame_idx), cam2_seg)
if __name__ == "__main__":
basedir = 'KITTI'
date = '2011_09_26'
drive = '0005'
image_h = 375
image_w = 1242
image_ratio = 0.25 # [0.25 ~ 0.5] is recommended for KITTI
main(basedir, date, drive, image_h, image_w, image_ratio)