This repository has been archived by the owner on Sep 17, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
plaintext_keyterms.py
93 lines (75 loc) · 3.16 KB
/
plaintext_keyterms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# vim: set encoding=utf-8
import re
from pyparsing import Literal
from regparser import api_stub
from regparser.citations import internal_citations, Label
from regparser.grammar.external_citations import regtext_external_citation
from regparser.layer import key_terms
from regparser.tree import struct
def generate_key_terms_layer(xml_based_reg_json):
layer_generator = key_terms.KeyTerms(xml_based_reg_json)
return layer_generator.build()
# We're not going to use our heuristic to determine key terms for paragraphs
# this has already properly been done for.
xml_based_reg = api_stub.get_regulation_as_json('/tmp/xtree.json')
real_key_terms_layer = generate_key_terms_layer(xml_based_reg)
layer = {}
part_end = '1005.'
exclude_parser = (
regtext_external_citation
| Literal("U.S.")
)
period = re.compile(r'\.(?!,)') # Not followed by a comma
def generate_keyterm(node):
label_id = node.label_id()
if label_id in real_key_terms_layer:
layer[label_id] = real_key_terms_layer[label_id]
else:
node_text = key_terms.KeyTerms.process_node_text(node)
if not node_text:
return
# Our Appendix parsing isn't particularly accurate -- avoid keyterms
if node.node_type == struct.Node.APPENDIX:
return
exclude = [(start, end) for _, start, end in
exclude_parser.scanString(node_text)]
exclude.extend((pc.full_start, pc.full_end) for pc in
internal_citations(node_text, Label()))
periods = [m.start() for m in period.finditer(node_text)]
# Remove any periods which are part of a citation
periods = filter(lambda p: all(p < start or p > end
for start, end in exclude), periods)
# Key terms must either have a full "sentence" or end with a hyphen
if not periods and node_text[-1] != u'—':
return
if periods:
first_p = periods[0]
# Check for cases where the period is "inside" something;
# include the period
next_char = node_text[first_p + 1: first_p + 2]
if next_char in (')', u'”'):
first_sentence = node_text[:first_p + 2]
else:
first_sentence = node_text[:first_p + 1]
else:
first_sentence = node_text
# Key terms can't be the entire text of a leaf node
if first_sentence == node_text and not node.children:
return
words = first_sentence.split()
if (not words[-1] == part_end and
not first_sentence.startswith('![')):
num_words = len(words)
# key terms are short
if num_words <= 15:
layer_element = {
"key_term": first_sentence,
"locations": [0]
}
layer[label_id] = [layer_element]
if __name__ == "__main__":
# Use the plain text based JSON for the regulation.
tree = api_stub.get_regulation_as_json(
'/vagrant/data/stub-server/regulation/1005/2013-10604-eregs')
struct.walk(tree, generate_keyterm)
print struct.NodeEncoder().encode(layer)