-
Notifications
You must be signed in to change notification settings - Fork 8
/
ddpg_car-racing.py
438 lines (353 loc) · 15.9 KB
/
ddpg_car-racing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
"""
Implementation of DDPG - Deep Deterministic Policy Gradient
Algorithm and hyperparameter details can be found here:
http://arxiv.org/pdf/1509.02971v2.pdf
The algorithm is tested on the Pendulum-v0 OpenAI gym task
and developed with tflearn + Tensorflow
Author: Patrick Emami
"""
import tensorflow as tf
import numpy as np
import gym
import tflearn
import matplotlib.pyplot as plt
from replay_buffer import ReplayBuffer
from skimage.color import rgb2grey
# ==========================
# Training Parameters
# ==========================
# Max training steps
MAX_EPISODES = 500000
# Max episode length
MAX_EP_STEPS = 2000
# Base learning rate for the Actor network
INITIAL_LR = 0.0001
MINI_LR = 1e-6
# Base learning rate for the Critic Network
# CRITIC_INITIAL_LR = 0.0001
# Discount factor
GAMMA = 0.9
# Soft target update param
TAU = 0.01
EPS_DECAY_RATE = 0.999
LR_DECAY_RATE = 0.99
# ===========================
# Utility Parameters
# ===========================
# Render gym env during training
RENDER_ENV = True
# Use Gym Monitor
GYM_MONITOR_EN = False
# Gym environment
ENV_NAME = 'CarRacing-v0'
# Directory for storing gym results
MONITOR_DIR = './results/gym_ddpg'
# Directory for storing tensorboard summary results
SUMMARY_DIR = './results/tf_ddpg'
RANDOM_SEED = 1234
# Size of replay buffer
BUFFER_SIZE = 10000
MINIBATCH_SIZE = 64
SAVE_STEP = 200
# ===========================
# Actor and Critic DNNs
# ===========================
class ActorNetwork(object):
"""
Input to the network is the state, output is the action
under a deterministic policy.
The output layer activation is a tanh to keep the action
between -2 and 2
"""
def __init__(self, sess, state_dim, action_dim, action_bound, tau):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.action_bound = action_bound
self.tau = tau
# Actor Network
self.inputs, self.scaled_out = self.create_actor_network()
self.learning_rate = tf.placeholder(tf.float32, [None,])
self.network_params = tf.trainable_variables()
# Target Network
self.target_inputs, self.target_scaled_out = self.create_actor_network()
self.target_network_params = tf.trainable_variables()[len(self.network_params):]
# Op for periodically updating target network with online network weights
self.update_target_network_params = \
[self.target_network_params[i].assign(tf.multiply(self.network_params[i], self.tau) + \
tf.multiply(self.target_network_params[i], 1. - self.tau))
for i in range(len(self.target_network_params))]
# This gradient will be provided by the critic network
self.action_gradient = tf.placeholder(tf.float32, [None, self.a_dim])
# Combine the gradients here
self.actor_gradients = tf.gradients(self.scaled_out, self.network_params, -self.action_gradient)
# Optimization Op
self.lr = tf.gather_nd(self.learning_rate,[0])
self.optimize = tf.train.AdamOptimizer(self.lr).\
apply_gradients(zip(self.actor_gradients, self.network_params))
self.num_trainable_vars = len(self.network_params) + len(self.target_network_params)
def create_actor_network(self):
inputs = tflearn.input_data(shape=[None, self.s_dim[0], self.s_dim[1], self.s_dim[2]])
net = tflearn.conv_2d(inputs, 8, 8, activation='relu', name='actor_conv1')
net = tflearn.conv_2d(inputs, 16, 8, activation='relu', name='actor_conv2')
net = tflearn.layers.normalization.batch_normalization (net, name='actor_BatchNormalization1')
net = tflearn.fully_connected(inputs, 50, activation='relu')
# net = tflearn.layers.normalization.batch_normalization (net, name='actor_BatchNormalization1')
# net = tflearn.fully_connected(net, 50, activation='relu')
net = tflearn.layers.normalization.batch_normalization (net, name='actor_BatchNormalization2')
# Final layer weights are init to Uniform[-3e-3, 3e-3]
w_init = tflearn.initializations.uniform(minval=-0.003, maxval=0.003)
steering = tflearn.fully_connected(net, 1, activation='tanh', weights_init=w_init)
acceleration = tflearn.fully_connected(net, 1, activation='sigmoid', weights_init=w_init)
brake = tflearn.fully_connected(net, 1, activation='sigmoid', weights_init=w_init)
scaled_out = tf.concat([steering,acceleration,brake],1)
return inputs, scaled_out
def train(self, inputs, a_gradient, lr):
self.sess.run(self.optimize, feed_dict={
self.inputs: inputs,
self.action_gradient: a_gradient,
self.learning_rate: lr
})
def predict(self, inputs):
return self.sess.run(self.scaled_out, feed_dict={
self.inputs: inputs
})
def predict_target(self, inputs):
return self.sess.run(self.target_scaled_out, feed_dict={
self.target_inputs: inputs
})
def update_target_network(self):
self.sess.run(self.update_target_network_params)
def get_num_trainable_vars(self):
return self.num_trainable_vars
class CriticNetwork(object):
"""
Input to the network is the state and action, output is Q(s,a).
The action must be obtained from the output of the Actor network.
"""
def __init__(self, sess, state_dim, action_dim, tau, num_actor_vars):
self.sess = sess
self.s_dim = state_dim
self.a_dim = action_dim
self.tau = tau
# Create the critic network
self.inputs, self.action, self.out = self.create_critic_network()
self.network_params = tf.trainable_variables()[num_actor_vars:]
self.learning_rate = tf.placeholder(tf.float32, [None,])
# Target Network
self.target_inputs, self.target_action, self.target_out = self.create_critic_network()
self.target_network_params = tf.trainable_variables()[(len(self.network_params) + num_actor_vars):]
# Op for periodically updating target network with online network weights with regularization
self.update_target_network_params = \
[self.target_network_params[i].assign(tf.multiply(self.network_params[i], self.tau) + tf.multiply(self.target_network_params[i], 1. - self.tau))
for i in range(len(self.target_network_params))]
# Network target (y_i)
self.predicted_q_value = tf.placeholder(tf.float32, [None, 1])
# Define loss and optimization Op
self.loss = tflearn.mean_square(self.predicted_q_value, self.out)
self.lr = tf.gather_nd(self.learning_rate,[0])
self.optimize = tf.train.AdamOptimizer(self.lr).minimize(self.loss)
# Get the gradient of the net w.r.t. the action
self.action_grads = tf.gradients(self.out, self.action)
def create_critic_network(self):
inputs = tflearn.input_data(shape=[None, self.s_dim[0], self.s_dim[1], self.s_dim[2]])
action = tflearn.input_data(shape=[None, self.a_dim])
net = tflearn.conv_2d(inputs, 8, 8, activation='relu', name='critic_conv1')
# net = tflearn.conv_2d(net, 8, 8, activation='relu', name='critic_conv2')
net = tflearn.layers.normalization.batch_normalization (net, name='critic_BatchNormalization1')
net = tflearn.fully_connected(net, 100, activation='relu')
# net = tflearn.layers.normalization.batch_normalization (net, name='critic_BatchNormalization1')
# Add the action tensor in the 2nd hidden layer
# Use two temp layers to get the corresponding weights and biases
t1 = tflearn.fully_connected(net, 50)
t2 = tflearn.fully_connected(action, 50)
net = tflearn.activation(tf.matmul(net,t1.W) + tf.matmul(action, t2.W) + t2.b, activation='relu')
net = tflearn.layers.normalization.batch_normalization (net, name='critic_BatchNormalization2')
# linear layer connected to 1 output representing Q(s,a)
# Weights are init to Uniform[-3e-3, 3e-3]
w_init = tflearn.initializations.uniform(minval=-0.003, maxval=0.003)
out = tflearn.fully_connected(net, 1, weights_init=w_init)
return inputs, action, out
def train(self, inputs, action, predicted_q_value, lr):
return self.sess.run([self.out, self.optimize], feed_dict={
self.inputs: inputs,
self.action: action,
self.predicted_q_value: predicted_q_value,
self.learning_rate: lr
})
def predict(self, inputs, action):
return self.sess.run(self.out, feed_dict={
self.inputs: inputs,
self.action: action
})
def predict_target(self, inputs, action):
return self.sess.run(self.target_out, feed_dict={
self.target_inputs: inputs,
self.target_action: action
})
def action_gradients(self, inputs, actions):
return self.sess.run(self.action_grads, feed_dict={
self.inputs: inputs,
self.action: actions
})
def update_target_network(self):
self.sess.run(self.update_target_network_params)
# ===========================
# Tensorflow Summary Ops
# ===========================
def build_summaries():
episode_reward = tf.Variable(0.)
tf.summary.scalar("Reward", episode_reward)
episode_ave_max_q = tf.Variable(0.)
tf.summary.scalar("Qmax Value", episode_ave_max_q)
summary_vars = [episode_reward, episode_ave_max_q]
summary_ops = tf.summary.merge_all()
return summary_ops, summary_vars
# ===========================
# Agent Training
# ===========================
def train(sess, env, actor, critic, global_step):
# Set up summary Ops
summary_ops, summary_vars = build_summaries()
sess.run(tf.global_variables_initializer())
# load model if have
saver = tf.train.Saver()
checkpoint = tf.train.get_checkpoint_state("./results")
if checkpoint and checkpoint.model_checkpoint_path:
saver.restore(sess, checkpoint.model_checkpoint_path)
print ("Successfully loaded:", checkpoint.model_checkpoint_path)
print("global step: ", global_step.eval())
else:
print ("Could not find old network weights")
writer = tf.summary.FileWriter(SUMMARY_DIR, sess.graph)
# Initialize target network weights
actor.update_target_network()
critic.update_target_network()
# Initialize replay memory
replay_buffer = ReplayBuffer(BUFFER_SIZE, RANDOM_SEED)
i = global_step.eval()
eps = 1
lr = INITIAL_LR
while True:
i += 1
s = env.reset()
# s = prepro(s)
ep_reward = 0
ep_ave_max_q = 0
eps *= EPS_DECAY_RATE
lr *= LR_DECAY_RATE
lr = np.max([lr, MINI_LR]) # minimum of learning rate is MINI_LR
if i % SAVE_STEP == 0 : # save check point every 1000 episode
sess.run(global_step.assign(i))
save_path = saver.save(sess, "./results/model.ckpt" , global_step = global_step)
print("Model saved in file: %s" % save_path)
print("Successfully saved global step: ", global_step.eval())
for j in xrange(MAX_EP_STEPS):
if RENDER_ENV:
env.render()
# print(s.shape)
a = actor.predict(np.reshape(s,(-1,96,96,3)))
# action = a[0] + 1./(1+i+j) # add noise for exploration
noise = np.random.normal(0,0.2*eps, 3)
noise[1] = np.random.normal(0.4,0.1*eps)
action = a[0] + noise
s2, r, terminal, info = env.step(action)
# s2 = prepro(s2)
action = np.expand_dims(action, axis=0)
# plt.imshow(s2)
# plt.show()
# if r > 0:
# r = 1
# elif r < 0:
# r = -1
# print 'r: ',r
# replay_buffer.add(np.reshape(s, (96, 96, 3)), np.reshape(action, (actor.a_dim,)), r,
# terminal, np.reshape(s2, (96, 96, 3)),lr)
replay_buffer.add(s, np.reshape(action, (actor.a_dim,)), r,
terminal, s2,lr)
# Keep adding experience to the memory until
# there are at least minibatch size samples
if replay_buffer.size() > MINIBATCH_SIZE:
s_batch, a_batch, r_batch, t_batch, s2_batch, lr_batch = \
replay_buffer.sample_batch(MINIBATCH_SIZE)
# Calculate targets
target_q = critic.predict_target(s2_batch, actor.predict_target(s2_batch))
y_i = []
for k in xrange(MINIBATCH_SIZE):
if t_batch[k]:
y_i.append(r_batch[k])
else:
y_i.append(r_batch[k] + GAMMA * target_q[k])
# Update the critic given the targets
predicted_q_value, _ = critic.train(s_batch, a_batch, np.reshape(y_i, (MINIBATCH_SIZE, 1)), lr_batch)
ep_ave_max_q += np.amax(predicted_q_value)
# print ep_ave_max_q
# Update the actor policy using the sampled gradient
a_outs = actor.predict(s_batch)
grads = critic.action_gradients(s_batch, a_outs)
# print grads[0]
actor.train(s_batch, grads[0], lr_batch)
# Update target networks
actor.update_target_network()
critic.update_target_network()
summary_str = sess.run(summary_ops, feed_dict={
summary_vars[0]: ep_reward,
summary_vars[1]: ep_ave_max_q / float(j)
})
writer.add_summary(summary_str, i)
writer.flush()
print '| Reward: %.2i' % int(ep_reward), " | Episode", i, \
'| Qmax: %.4f' % (ep_ave_max_q / float(j))
s = s2
ep_reward += r
if terminal:
# summary_str = sess.run(summary_ops, feed_dict={
# summary_vars[0]: ep_reward,
# summary_vars[1]: ep_ave_max_q / float(j)
# })
# writer.add_summary(summary_str, i)
# writer.flush()
# print '| Reward: %.2i' % int(ep_reward), " | Episode", i, \
# '| Qmax: %.4f' % (ep_ave_max_q / float(j))
break
def prepro(I):
# """ prepro 210x160x3 uint8 frame into 6400 (80x80) 1D float vector """
# I = I[35:195] # crop
# I = I[::2,::2,0] # downsample by factor of 2
# I[I == 144] = 0 # erase background (background type 1)
# I[I == 109] = 0 # erase background (background type 2)
# I[I != 0] = 1 # everything else (paddles, ball) just set to 1
I = rgb2grey(I)
return I
def process(S, X):
X=np.expand_dim(X, axis=2)
self.S1 = np.append(S[:,:,1:], X, axis=2)
def main(_):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session() as sess:
global_step = tf.Variable(0, name='global_step', trainable=False)
env = gym.make(ENV_NAME)
np.random.seed(RANDOM_SEED)
tf.set_random_seed(RANDOM_SEED)
env.seed(RANDOM_SEED)
state_dim = [96, 96, 3]
action_dim = env.action_space.shape[0]
action_bound = env.action_space.high
print('state_dim: ',state_dim)
print('action_dim: ',action_dim)
print('action_bound: ',action_bound)
# Ensure action bound is symmetric
# assert (env.action_space.high == -env.action_space.low)
actor = ActorNetwork(sess, state_dim, action_dim, action_bound, TAU)
critic = CriticNetwork(sess, state_dim, action_dim, TAU, actor.get_num_trainable_vars())
if GYM_MONITOR_EN:
if not RENDER_ENV:
env.monitor.start(MONITOR_DIR, video_callable=False, force=True)
else:
env.monitor.start(MONITOR_DIR, force=True)
train(sess, env, actor, critic, global_step)
if GYM_MONITOR_EN:
env.monitor.close()
if __name__ == '__main__':
tf.app.run()