-
Notifications
You must be signed in to change notification settings - Fork 6
/
predict.py
184 lines (176 loc) · 9.63 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os, sys
from cog import BasePredictor, Input, Path
from typing import List
sys.path.append('/content/InstantMesh')
os.chdir('/content/InstantMesh')
import torch
import rembg
import tempfile
import imageio
import numpy as np
from PIL import Image
from pytorch_lightning import seed_everything
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from huggingface_hub import hf_hub_download
from src.utils.infer_util import remove_background, resize_foreground
from torchvision.transforms import v2
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (FOV_to_intrinsics, get_zero123plus_input_cameras,get_circular_camera_poses,)
from src.utils.mesh_util import save_obj, save_obj_with_mtl
def preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
def generate_mvs(input_image, sample_steps, sample_seed, pipeline, device):
seed_everything(sample_seed)
generator = torch.Generator(device=device)
z123_image = pipeline(
input_image,
num_inference_steps=sample_steps,
generator=generator,
).images[0]
show_image = np.asarray(z123_image, dtype=np.uint8)
show_image = torch.from_numpy(show_image) # (960, 640, 3)
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
show_image = Image.fromarray(show_image.numpy())
return z123_image, show_image
def images_to_video(images, output_path, fps=30):
os.makedirs(os.path.dirname(output_path), exist_ok=True)
frames = []
for i in range(images.shape[0]):
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
assert frame.min() >= 0 and frame.max() <= 255, \
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
frames.append(frame)
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def make_mesh(mesh_fpath, planes, model, infer_config, export_texmap):
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_vis_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
with torch.no_grad():
mesh_out = model.extract_mesh(planes, use_texture_map=export_texmap, **infer_config,)
if export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_fpath,
)
print(f"Mesh with texmap saved to {mesh_fpath}")
else:
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
vertices[:, -1] *= -1
faces = faces[:, [2, 1, 0]]
save_obj(vertices, faces, vertex_colors, mesh_fpath)
print(f"Mesh saved to {mesh_fpath}")
return mesh_fpath
def make3d(images, model, device, IS_FLEXICUBES, infer_config, export_video, export_texmap):
images = np.asarray(images, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
render_cameras = get_render_cameras(
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device)
images = images.unsqueeze(0).to(device)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
print(mesh_fpath)
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
with torch.no_grad():
planes = model.forward_planes(images, input_cameras)
chunk_size = 20 if IS_FLEXICUBES else 1
render_size = 384
frames = []
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if IS_FLEXICUBES:
frame = model.forward_geometry(planes, render_cameras[:, i:i+chunk_size], render_size=render_size,)['img']
else:
frame = model.synthesizer(planes, cameras=render_cameras[:, i:i+chunk_size],render_size=render_size,)['images_rgb']
frames.append(frame)
frames = torch.cat(frames, dim=1)
if export_video:
images_to_video(frames[0], video_fpath, fps=30,)
print(f"Video saved to {video_fpath}")
mesh_fpath = make_mesh(mesh_fpath, planes, model, infer_config, export_texmap)
if export_video:
return video_fpath, mesh_fpath
else:
return mesh_fpath
class Predictor(BasePredictor):
def setup(self) -> None:
self.pipeline = DiffusionPipeline.from_pretrained("sudo-ai/zero123plus-v1.2", custom_pipeline="zero123plus",torch_dtype=torch.float16,)
self.pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipeline.scheduler.config, timestep_spacing='trailing')
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
self.pipeline.unet.load_state_dict(state_dict, strict=True)
self.device = torch.device('cuda')
self.pipeline = self.pipeline.to(self.device)
seed_everything(0)
config_path = 'configs/instant-mesh-large.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
self.infer_config = config.infer_config
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
self.model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
self.model.load_state_dict(state_dict, strict=True)
self.model = self.model.to(self.device)
self.IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
if self.IS_FLEXICUBES:
self.model.init_flexicubes_geometry(self.device, fovy=30.0)
self.model = self.model.eval()
def predict(
self,
image_path: Path = Input(description="Input image"),
remove_background: bool = True,
export_video: bool = True,
export_texmap: bool = False,
sample_steps: int = Input(default=75),
seed: int = Input(default=42),
) -> List[Path]:
input_image = Image.open(image_path)
processed_image = preprocess(input_image, remove_background)
mv_images, mv_show_images = generate_mvs(processed_image, sample_steps, seed, self.pipeline, self.device)
mv_images.save('/content/InstantMesh/mv_images.png')
mv_show_images.save('/content/InstantMesh/mv_show_images.png')
if export_video:
output_video, output_model_obj = make3d(mv_images, self.model, self.device, self.IS_FLEXICUBES, self.infer_config, export_video, export_texmap)
if export_texmap:
mesh_basename = os.path.splitext(output_model_obj)[0]
return [Path('/content/InstantMesh/mv_show_images.png'), Path(output_video), Path(output_model_obj), Path(mesh_basename+'.mtl'), Path(mesh_basename+'.png')]
else:
return [Path('/content/InstantMesh/mv_show_images.png'), Path(output_video), Path(output_model_obj)]
else:
output_model_obj = make3d(mv_images, self.model, self.device, self.IS_FLEXICUBES, self.infer_config, export_video, export_texmap)
if export_texmap:
mesh_basename = os.path.splitext(output_model_obj)[0]
return [Path('/content/InstantMesh/mv_show_images.png'), Path(output_model_obj), Path(mesh_basename+'.mtl'), Path(mesh_basename+'.png')]
else:
return [Path('/content/InstantMesh/mv_show_images.png'), Path(output_model_obj)]