-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdemo_script.sh
executable file
·49 lines (40 loc) · 1.82 KB
/
demo_script.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/bin/bash
#################################################################
# This script provides an example of an scNym training run.
# Here, we download data from the Tabula Muris and train an
# scNym model to predict cell types from these data.
#################################################################
#################################################################
# SET PARAMETERS
#################################################################
# Set the directory for downloaded files
DOWNLOAD_DIR=tmp
mkdir ${DOWNLOAD_DIR}
#################################################################
# DOWNLOAD AND PREPARE TABULA MURIS DATA
#################################################################
# Download Tabula Muris Senis lung data
echo "DOWNLOADING DATA"
cd ${DOWNLOAD_DIR}
wget https://ndownloader.figshare.com/files/15467792
mv 15467792 lung.h5ad
# export metadata as a separate CSV for scNym
echo "EXPORTING METADATA AND GENE NAMES"
echo "NORMALIZING COUNTS TO LOG(CPM + 1)"
python -c "import anndata; import numpy as np; import scanpy.api as sc; a=anndata.read_h5ad('lung.h5ad'); a.obs.to_csv('metadata.csv'); np.savetxt('gene_names.csv', a.var_names, fmt='%s'); sc.pp.normalize_per_cell(a, counts_per_cell_after=1e6); sc.pp.log1p(a); a.write_h5ad('lung.h5ad')"
# return to the original directory
cd -
#################################################################
# TRAIN SCNYM
#################################################################
echo "TRAINING SCNYM"
scnym train_tissue_independent \
-c configs/default_config.txt \
--input_counts ${DOWNLOAD_DIR}/lung.h5ad \
--input_gene_names ${DOWNLOAD_DIR}/gene_names.csv \
--training_metadata ${DOWNLOAD_DIR}/metadata.csv \
--lower_group cell_ontology_class \
--upper_group tissue \
--n_epochs 50 \
--out_path ./tmp
echo "DONE"