-
Notifications
You must be signed in to change notification settings - Fork 32
/
types_ops.c
615 lines (512 loc) · 17.1 KB
/
types_ops.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/*
* Copyright (C) 2004-2010 Christos Tsantilas
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02110-1301 USA.
*/
#include "common.h"
#include "c-icap.h"
#include "net_io.h"
#include "mem.h"
#include "lookup_table.h"
#include "cfg_param.h"
#include "filetype.h"
#include "debug.h"
#if defined(USE_REGEX)
#include "ci_regex.h"
#endif
/*string operators */
void *stringdup(const char *str, ci_mem_allocator_t *allocator)
{
size_t str_size = strlen(str) + 1;
char *new_s = allocator->alloc(allocator, str_size);
if (new_s) {
strncpy(new_s, str, str_size);
new_s[str_size - 1] = '\0';
}
return new_s;
}
int stringcmp(const void *key1,const void *key2)
{
if (!key2)
return -1;
return strcmp((const char *)key1,(const char *)key2);
}
int stringequal(const void *key1,const void *key2)
{
if (!key2)
return 0;
return strcmp((const char *)key1,(const char *)key2) == 0;
}
size_t stringlen(const void *key)
{
return strlen((const char *)key)+1;
}
void stringfree(void *key, ci_mem_allocator_t *allocator)
{
allocator->free(allocator, key);
}
const ci_type_ops_t ci_str_ops = {
stringdup,
stringfree,
stringcmp,
stringlen,
stringequal,
};
int string_ext_cmp(const void *key1,const void *key2)
{
if (!key2)
return -1;
if (strcmp((const char *)key1, "*") == 0)
return 0;
return strcmp((const char *)key1,(const char *)key2);
}
int string_ext_equal(const void *key1,const void *key2)
{
if (!key2)
return 0;
if (strcmp((const char *)key1, "*") == 0)
return 1;
return strcmp((const char *)key1,(const char *)key2) == 0;
}
const ci_type_ops_t ci_str_ext_ops = {
stringdup,
stringfree,
string_ext_cmp,
stringlen,
string_ext_equal,
};
/*int32 operators*/
void *int32_dup(const char *str, ci_mem_allocator_t *allocator)
{
int32_t *i;
char *e = NULL;
i = allocator->alloc(allocator, sizeof(int32_t));
if (i) {
*i = strtol(str, &e, 10);
if (*e == 'K' || *e == 'k')
*i = *i * 1000;
else if (*e == 'M' || *e == 'm')
*i = *i * 1000000;
else if (*e == 'G' || *e == 'g')
*i = *i * 1000000000;
}
return (void *)i;
}
int int32_cmp(const void *key1,const void *key2)
{
int32_t k1, k2;
k1 = *(int32_t *)key1;
k2 = *(int32_t *)key2;
if (k1 < k2)
return -1;
if (k1 > k2)
return 1;
return 0;
}
int int32_equal(const void *key1,const void *key2)
{
int32_t k1,k2;
k1 = *(int32_t *)key1;
k2 = *(int32_t *)key2;
return k1 == k2;
}
size_t int32_len(const void *key)
{
return (size_t)4;
}
void int32_free(void *key, ci_mem_allocator_t *allocator)
{
/*nothing*/
allocator->free(allocator, key);
}
const ci_type_ops_t ci_int32_ops = {
int32_dup,
int32_free,
int32_cmp,
int32_len,
int32_equal
};
/*uint64 operators*/
void *uint64_dup(const char *str, ci_mem_allocator_t *allocator)
{
uint64_t *i;
char *e = NULL;
i = allocator->alloc(allocator, sizeof(uint64_t));
if (i) {
*i = strtoll(str, &e, 10);
if (*e == 'K' || *e == 'k')
*i = *i * 1000;
else if (*e == 'M' || *e == 'm')
*i = *i * 1000000;
else if (*e == 'G' || *e == 'g')
*i = *i * 1000000000;
}
return (void *)i;
}
int uint64_cmp(const void *key1,const void *key2)
{
uint64_t k1,k2;
k1 = *(uint64_t *)key1;
k2 = *(uint64_t *)key2;
if (k1 < k2)
return -1;
if (k1 > k2)
return 1;
return 0;
}
int uint64_equal(const void *key1,const void *key2)
{
uint64_t k1,k2;
k1 = *(uint64_t *)key1;
k2 = *(uint64_t *)key2;
return k1 == k2;
}
void uint64_free(void *key, ci_mem_allocator_t *allocator)
{
allocator->free(allocator, key);
}
size_t uint64_len(const void *key)
{
return (size_t)sizeof(uint64_t);
}
const ci_type_ops_t ci_uint64_ops = {
uint64_dup,
uint64_free,
uint64_cmp,
uint64_len,
uint64_equal
};
/*regular expresion operator definition */
#if defined(USE_REGEX)
/*We only need the preg field which holds the compiled regular expression
but keep the uncompiled string too just for debuging reasons */
struct ci_acl_regex {
char *str;
int flags;
ci_regex_t preg;
};
/*Parse the a regular expression in the form: /regexpression/flags
where flags nothing or 'i'. Examples:
/^\{[a-z| ]*\}/i
/^some test.*t/
*/
void *regex_dup(const char *str, ci_mem_allocator_t *allocator)
{
struct ci_acl_regex *reg;
char *newstr;
int flags, recursive;
newstr = ci_regex_parse(str, &flags, &recursive);
if (!newstr) {
ci_debug_printf(1,"Parse error, while parsing regex: '%s')!\n", str);
return NULL;
}
reg = allocator->alloc(allocator,sizeof(struct ci_acl_regex));
if (!reg) {
ci_debug_printf(1,"Error allocating memory for regex_dup (1)!\n");
free(newstr);
return NULL;
}
if ((reg->preg = ci_regex_build(newstr, flags)) == NULL) {
ci_debug_printf(1, "Error compiling regular expression :%s (%s)\n", str, newstr);
allocator->free(allocator, reg);
free(newstr);
return NULL;
}
reg->str = newstr;
reg->flags = flags;
return reg;
}
int regex_cmp(const void *key1, const void *key2)
{
struct ci_acl_regex *reg = (struct ci_acl_regex *)key1;
if (!key2)
return -1;
return (ci_regex_apply(reg->preg, (const char *)key2, -1, 0, NULL, NULL) == 0 ? 1 : 0);
}
int regex_equal(const void *key1, const void *key2)
{
struct ci_acl_regex *reg = (struct ci_acl_regex *)key1;
if (!key2)
return 0;
return ci_regex_apply(reg->preg, (const char *)key2, -1, 0, NULL, NULL) != 0;
}
size_t regex_len(const void *key)
{
return strlen(((const struct ci_acl_regex *)key)->str);
}
void regex_free(void *key, ci_mem_allocator_t *allocator)
{
struct ci_acl_regex *reg = (struct ci_acl_regex *)key;
ci_regex_free(reg->preg);
allocator->free(allocator, reg->str);
allocator->free(allocator, reg);
}
const ci_type_ops_t ci_regex_ops = {
regex_dup,
regex_free,
regex_cmp,
regex_len,
regex_equal
};
#endif
/*filetype operators*/
void *datatype_dup(const char *str, ci_mem_allocator_t *allocator)
{
int type;
unsigned int *val = allocator->alloc(allocator,sizeof(unsigned int));
if ((type = ci_magic_type_id(str)) >= 0) {
*val = type;
} else if ( (type = ci_magic_group_id(str)) >= 0) {
*val = type;
*val = *val << 16;
} else {
allocator->free(allocator, val);
val = NULL;
}
return (void *)val;
}
int datatype_cmp(const void *key1, const void *key2)
{
unsigned int type = *(unsigned int *)key1;
if (!key2)
return -1;
if ( (0xFFFF0000 & type) == 0)
return (*(unsigned int *)key1 - *(unsigned int *)key2);
else { /*type is group check if key2 belongs to group*/
type = type >> 16;
if (ci_magic_group_check(*(unsigned int *)key2, type))
return 0;
else
return 1;
}
}
int datatype_equal(const void *key1, const void *key2)
{
unsigned int type = *(unsigned int *)key1;
if (!key2)
return 0;
if ( (0xFFFF0000 & type) == 0)
return *(unsigned int *)key1 == *(unsigned int *)key2;
else { /*type is group check if key2 belongs to group*/
type = type >> 16;
if (ci_magic_group_check(*(unsigned int *)key2, (int)type))
return 1;
else
return 0;
}
}
size_t datatype_len(const void *key)
{
return sizeof(unsigned int);
}
void datatype_free(void *key, ci_mem_allocator_t *allocator)
{
/*nothing*/
allocator->free(allocator, key);
}
const ci_type_ops_t ci_datatype_ops = {
datatype_dup,
datatype_free,
datatype_cmp,
datatype_len,
datatype_equal
};
/*IP operators*/
#ifdef HAVE_IPV6
void ci_list_ipv4_to_ipv6();
#define ci_ipv4_inaddr_is_zero(addr) ((addr).ipv4_addr.s_addr==0)
#define ci_ipv4_inaddr_are_equal(addr1,addr2) ((addr1).ipv4_addr.s_addr == (addr2).ipv4_addr.s_addr)
#define ci_ipv4_inaddr_zero(addr) ((addr).ipv4_addr.s_addr=0)
#define ci_ipv6_inaddr_is_zero(addr) ( ci_in6_addr_u32(addr)[0] == 0 && \
ci_in6_addr_u32(addr)[1] == 0 && \
ci_in6_addr_u32(addr)[2] == 0 && \
ci_in6_addr_u32(addr)[3] == 0)
#define ci_ipv6_inaddr_are_equal(addr1,addr2) ( ci_in6_addr_u32(addr1)[0] == ci_in6_addr_u32(addr2)[0] && \
ci_in6_addr_u32(addr1)[1] == ci_in6_addr_u32(addr2)[1] && \
ci_in6_addr_u32(addr1)[2] == ci_in6_addr_u32(addr2)[2] && \
ci_in6_addr_u32(addr1)[3] == ci_in6_addr_u32(addr2)[3])
#define ci_ipv6_inaddr_is_v4mapped(addr) (ci_in6_addr_u32(addr)[0] == 0 &&\
ci_in6_addr_u32(addr)[1] == 0 && \
ci_in6_addr_u32(addr)[2] == htonl(0xFFFF))
#define ci_ipv4_inaddr_check_net(addr1,addr2,mask) (((addr1).ipv4_addr.s_addr & (mask).ipv4_addr.s_addr) == ((addr2).ipv4_addr.s_addr & (mask).ipv4_addr.s_addr))
#define ci_ipv6_inaddr_check_net(addr1,addr2,mask) ((ci_in6_addr_u32(addr1)[0] & ci_in6_addr_u32(mask)[0]) == (ci_in6_addr_u32(addr2)[0] & ci_in6_addr_u32(mask)[0]) &&\
(ci_in6_addr_u32(addr1)[1] & ci_in6_addr_u32(mask)[1]) == (ci_in6_addr_u32(addr2)[1] & ci_in6_addr_u32(mask)[1]) && \
(ci_in6_addr_u32(addr1)[2] & ci_in6_addr_u32(mask)[2]) == (ci_in6_addr_u32(addr2)[2] & ci_in6_addr_u32(mask)[2]) && \
(ci_in6_addr_u32(addr1)[3] & ci_in6_addr_u32(mask)[3]) == (ci_in6_addr_u32(addr2)[3] & ci_in6_addr_u32(mask)[3]))
#define ci_ipv4_in_ipv6_check_net(addr1, addr2, mask) (ci_in6_addr_u32(addr2)[0] == 0 && \
ci_in6_addr_u32(addr2)[1] == 0 && \
ci_in6_addr_u32(addr2)[2] == htonl(0xFFFF) && \
((addr1).ipv4_addr.s_addr & (mask).ipv4_addr.s_addr) == (ci_in6_addr_u32(addr2)[3] & (mask).ipv4_addr.s_addr))
#define ci_ipv6_in_ipv4_check_net(addr1, addr2, mask) (ci_in6_addr_u32(addr1)[0] == 0 && \
ci_in6_addr_u32(addr1)[1] == 0 && \
ci_in6_addr_u32(addr1)[2] == htonl(0xFFFF) && \
(ci_in6_addr_u32(addr1)[3] & (mask).ipv4_addr.s_addr) == ((addr2).ipv4_addr.s_addr & (mask).ipv4_addr.s_addr))
/*We can do this because ipv4_addr in practice exists in s6_addr[0]*/
#define ci_inaddr_ipv4_to_ipv6(addr)( ci_in6_addr_u32(addr)[3] = (addr).ipv4_addr.s_addr,\
ci_in6_addr_u32(addr)[0] = 0, \
ci_in6_addr_u32(addr)[1] = 0, \
ci_in6_addr_u32(addr)[2] = htonl(0xFFFF))
#define ci_netmask_ipv4_to_ipv6(addr)(ci_in6_addr_u32(addr)[3] = (addr).ipv4_addr.s_addr, \
ci_in6_addr_u32(addr)[0] = htonl(0xFFFFFFFF), \
ci_in6_addr_u32(addr)[1] = htonl(0xFFFFFFFF), \
ci_in6_addr_u32(addr)[2] = htonl(0xFFFFFFFF))
#else /*if no HAVE_IPV6 */
#define ci_ipv4_inaddr_is_zero(addr) ((addr).s_addr==0)
#define ci_ipv4_inaddr_are_equal(addr1,addr2) ((addr1).s_addr == (addr2).s_addr)
#define ci_ipv4_inaddr_check_net(addr1,addr2,mask) (((addr1).s_addr & (mask).s_addr) == ((addr2).s_addr & (mask).s_addr))
#define ci_ipv4_inaddr_zero(addr) ((addr).s_addr=0)
#endif /*ifdef HAVE_IPV6 */
void *ip_dup(const char *value, ci_mem_allocator_t *allocator)
{
int socket_family, len;
ci_ip_t *ip;
char str_addr[CI_IPLEN+1], str_netmask[CI_IPLEN+1];
char *pstr;
ci_in_addr_t address, netmask;
ci_inaddr_zero(address);
ci_inaddr_zero(netmask);
#ifdef HAVE_IPV6
if (strchr(value,':'))
socket_family = AF_INET6;
else
#endif
socket_family = AF_INET;
if ((pstr=strchr(value,'/'))) {
len=(pstr-value);
if (len >= CI_IPLEN) {
ci_debug_printf(1,"Invalid ip address (len>%d): %s\n", CI_IPLEN, value);
return NULL;
}
strncpy(str_addr,value,len);
str_addr[len] = '\0';
if (!ci_inet_aton(socket_family, str_addr, &address)) {
ci_debug_printf(1,"Invalid ip address in network %s definition\n", value);
return NULL;
}
strncpy(str_netmask, pstr+1, CI_IPLEN);
str_netmask[CI_IPLEN] = '\0';
if (!ci_inet_aton(socket_family, str_netmask, &netmask)) {
ci_debug_printf(1,"Invalid netmask in network %s definition\n", value);
return NULL;
}
} else { /*No netmask defined is a host ip*/
if (!ci_inet_aton(socket_family, value, &address)) {
ci_debug_printf(1,"Invalid ip address: %s\n", value);
return NULL;
}
#ifdef HAVE_IPV6
if (socket_family==AF_INET)
ci_ipv4_inaddr_hostnetmask(netmask);
else
ci_ipv6_inaddr_hostnetmask(netmask);
#else
ci_ipv4_inaddr_hostnetmask(netmask);
#endif
}
ip= allocator->alloc(allocator, sizeof(ci_ip_t));
ip->family = socket_family;
ci_inaddr_copy(ip->address, address);
ci_inaddr_copy(ip->netmask, netmask);
return ip;
}
void ip_free(void *data, ci_mem_allocator_t *allocator)
{
allocator->free(allocator, data);
}
size_t ip_len(const void *key)
{
return sizeof(ci_ip_t);
}
int ip_cmp(const void *ref_key, const void *key_check)
{
/*Not implemented*/
return 0;
}
int ip_equal(const void *ref_key, const void *key_check)
{
const ci_ip_t *ip_ref = (const ci_ip_t *)ref_key;
const ci_ip_t *ip_check = (const ci_ip_t *)key_check;
char buf[128],buf1[128],buf2[128];
if (!ip_check)
return 0;
ci_debug_printf(9,"going to check addresses ip address: %s %s/%s\n",
ci_inet_ntoa(ip_check->family,&ip_check->address, buf, 128),
ci_inet_ntoa(ip_ref->family,&ip_ref->address, buf1, 128),
ci_inet_ntoa(ip_ref->family,&ip_ref->netmask, buf2, 128)
);
#ifdef HAVE_IPV6
if (ip_check->family == AF_INET) {
if (ip_ref->family == AF_INET)
return ci_ipv4_inaddr_check_net(ip_ref->address, ip_check->address, ip_ref->netmask);
//else add->family == AF_INET6
return ci_ipv6_in_ipv4_check_net(ip_ref->address, ip_check->address, ip_ref->netmask);
}
//else assuming ip_check->family == AF_INET6
if (ip_ref->family == AF_INET6)
return ci_ipv6_inaddr_check_net(ip_ref->address, ip_check->address, ip_ref->netmask);
//else ip->family == AF_INET
return ci_ipv4_in_ipv6_check_net(ip_ref->address, ip_check->address, ip_ref->netmask);
#else
return ci_ipv4_inaddr_check_net(ip_ref->address, ip_check->address, ip_ref->netmask);
#endif
}
int ip_sockaddr_cmp(const void *ref_key, const void *key_check)
{
/*Not implemented*/
return 1;
}
int ip_sockaddr_equal(const void *ref_key, const void *key_check)
{
const ci_ip_t *ip_ref = (const ci_ip_t *)ref_key;
const ci_sockaddr_t *ip_check = (const ci_sockaddr_t *)key_check;
char buf[128],buf1[128],buf2[128];
if (!ip_check)
return 0;
ci_debug_printf(9,"going to check addresses ip address: %s %s/%s\n",
ci_inet_ntoa(ip_check->ci_sin_family,ip_check->ci_sin_addr, buf, 128),
ci_inet_ntoa(ip_ref->family,&ip_ref->address, buf1, 128),
ci_inet_ntoa(ip_ref->family,&ip_ref->netmask, buf2, 128)
);
#ifdef HAVE_IPV6
if (ip_check->ci_sin_family == AF_INET) {
if (ip_ref->family == AF_INET)
return ci_ipv4_inaddr_check_net(ip_ref->address, *(ci_in_addr_t *)ip_check->ci_sin_addr, ip_ref->netmask);
//else add->family == AF_INET6
return ci_ipv6_in_ipv4_check_net(ip_ref->address, *(ci_in_addr_t *)ip_check->ci_sin_addr, ip_ref->netmask);
}
//else assuming ip_check->ci_sin_family == AF_INET6
if (ip_ref->family == AF_INET6)
return ci_ipv6_inaddr_check_net(ip_ref->address, *(ci_in_addr_t *)ip_check->ci_sin_addr, ip_ref->netmask);
//else ip->family == AF_INET
return ci_ipv4_in_ipv6_check_net(ip_ref->address, *(ci_in_addr_t *)ip_check->ci_sin_addr, ip_ref->netmask);
#else
return ci_ipv4_inaddr_check_net(ip_ref->address, *(ci_in_addr_t *)ip_check->ci_sin_addr, ip_ref->netmask);
#endif
}
const ci_type_ops_t ci_ip_ops = {
ip_dup,
ip_free,
ip_cmp,
ip_len,
ip_equal
};
const ci_type_ops_t ci_ip_sockaddr_ops = {
ip_dup,
ip_free,
ip_sockaddr_cmp,
ip_len,
ip_sockaddr_equal
};