-
Notifications
You must be signed in to change notification settings - Fork 622
/
Copy pathkafka_receiver.py
48 lines (43 loc) · 1.6 KB
/
kafka_receiver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Copyright 2022 ByteDance and/or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorflow as tf
from monolith.native_training.data.datasets import create_plain_kafka_dataset
raw_feature_desc = {
'mov': tf.io.FixedLenFeature([1], tf.int64),
'uid': tf.io.FixedLenFeature([1], tf.int64),
'label': tf.io.FixedLenFeature([], tf.float32)
}
def to_ragged(x):
return {
'mov': tf.RaggedTensor.from_tensor(x['mov']),
'uid': tf.RaggedTensor.from_tensor(x['uid']),
'label': x['label']
}
# corresponds to serailize_one in kafka_producer.py
def decode_example(v):
x = tf.io.parse_example(v, raw_feature_desc)
return to_ragged(x)
if __name__ == "__main__":
dataset = create_plain_kafka_dataset(topics=["movie-train"],
group_id="cgonline",
servers="127.0.0.1:9092",
stream_timeout=10000, # in milliseconds, to block indefinitely, set it to -1.
poll_batch_size=8,
configuration=[
"session.timeout.ms=7000",
"max.poll.interval.ms=8000"
],
)
for x in dataset.map(lambda x: decode_example(x.message)):
print(x)