forked from mzc421/Pytorch-NLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
131 lines (96 loc) · 4.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding:utf-8 -*-
# @author: 木子川
# @Email: [email protected]
# @VX:fylaicai
import time
from tqdm import tqdm
from config import parsers
from utils import read_data, MyDataset, build_label_index
from torch.utils.data import DataLoader
import torch
import torch.nn as nn
from model import BertNerModel
from seqeval.metrics import f1_score, precision_score, recall_score
def prepare_data():
global args
train_text, train_label = read_data(args.train_file)
dev_text, dev_label = read_data(args.dev_file)
test_text, test_label = read_data(args.test_file)
label_to_index, index_to_label = build_label_index(train_label)
trainDataset = MyDataset(train_text, label_to_index, labels=train_label, with_labels=True)
trainLoader = DataLoader(trainDataset, batch_size=args.batch_size, shuffle=True)
devDataset = MyDataset(dev_text, label_to_index, labels=dev_label, with_labels=True)
devLoader = DataLoader(devDataset, batch_size=args.batch_size, shuffle=False)
testDataset = MyDataset(test_text, label_to_index, labels=test_label, with_labels=True)
testLoader = DataLoader(testDataset, batch_size=args.batch_size, shuffle=False)
return trainLoader, devLoader, testLoader, label_to_index, index_to_label
if __name__ == "__main__":
start = time.time()
args = parsers()
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# device = "cpu"
train_loader, dev_loader, test_loader, label_index, index_label = prepare_data()
model = BertNerModel(len(label_index)).to(device)
opt = torch.optim.AdamW(model.parameters(), args.learn_rate)
loss_fun = nn.CrossEntropyLoss()
f1_max = float("-inf")
for epoch in range(args.epochs):
model.train()
loss_sum, num = 0, 0
pbar = tqdm(train_loader)
for batch_text, batch_label in pbar:
batch_text = batch_text.to(device)
batch_label = batch_label.to(device)
pred = model(batch_text)
loss = loss_fun(pred.reshape(-1, pred.shape[-1]), batch_label.reshape(-1))
loss.backward()
opt.step()
opt.zero_grad()
loss_sum += loss
num += 1
pbar.set_description('epoch: {}/{}'.format(epoch + 1, args.epochs)) # set_description()设置进度条前方信息
pbar.set_postfix({'loss': '{0:1.5f}'.format(loss)}) # set_postfix()设置进度条后方信息
loss_avg = loss_sum / num
print(f"train epoch:{epoch+1}\tloss:{loss_avg:.2f}")
model.eval()
all_pre = []
all_tag = []
for batch_text, batch_label in dev_loader:
batch_text = batch_text.to(device)
batch_label = batch_label.to(device)
pred = model(batch_text)
pred_label = torch.argmax(pred, dim=-1).cpu().numpy().tolist()
tag_label = batch_label.cpu().numpy().tolist()
for pred, tag in zip(pred_label, tag_label):
p = [index_label[i] for i in pred]
t = [index_label[i] for i in tag]
all_pre.append(p)
all_tag.append(t)
f1 = f1_score(all_tag, all_pre)
precision = precision_score(all_tag, all_pre)
recall = recall_score(all_tag, all_pre)
print(f"dev f1:{f1}, precision:{precision},recall:{recall}")
if f1_max < f1:
f1_max = f1
torch.save(model.state_dict(), args.save_model_best)
model.eval()
torch.save(model.state_dict(), args.save_model_last)
all_pre = []
all_tag = []
for batch_text, batch_label in test_loader:
batch_text = batch_text.to(device)
batch_label = batch_label.to(device)
pred = model(batch_text)
pred_label = torch.argmax(pred, dim=-1).cpu().numpy().tolist()
tag_label = batch_label.cpu().numpy().tolist()
for pred, tag in zip(pred_label, tag_label):
p = [index_label[i] for i in pred]
t = [index_label[i] for i in tag]
all_pre.append(p)
all_tag.append(t)
f1 = f1_score(all_tag, all_pre)
precision = precision_score(all_tag, all_pre)
recall = recall_score(all_tag, all_pre)
print(f"test f1:{f1}, precision:{precision},recall:{recall}")
end = time.time()
print(f"运行时间:{(end - start) / 60 % 60:.4f} min")