-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
245 lines (199 loc) · 8.91 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import random
import albumentations as A
import numpy as np
import torch
import torch.nn as nn
import wandb
from PIL import Image
from datasets import load_dataset
from torch.utils.data import DataLoader
from torchmetrics.image import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure
from torchvision.transforms import InterpolationMode
from torchvision.transforms import transforms as T
from tqdm import tqdm
from models.wran import WaveletBasedResidualAttentionNet
from utils import apply_preprocess, WaveletsTransform, InverseWaveletsTransform, OneOf, ssim_loss, psnr_loss
# Set random seed for reproducibility
random.seed(42)
torch.manual_seed(42)
# device = torch.device('cpu')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
psnr = psnr_loss
ssim = ssim_loss
# psnr = PeakSignalNoiseRatio().to(device)
# ssim = StructuralSimilarityIndexMeasure().to(device)
# Parameters
SCALE = 4
WIDTH = 64
BATCH_SIZE = 64
wt = WaveletsTransform().to(device)
iwt = InverseWaveletsTransform().to(device)
class AlbumentationsTransforms:
def __init__(self):
self.transform = A.Compose(
transforms=[
A.GridDropout(p=0.05, fill_value=0, random_offset=True, unit_size_min=6, unit_size_max=12),
A.ColorJitter(p=0.10, brightness=(.05, .3), contrast=(.05, .3), saturation=(.05, .3), hue=(.05, .3)),
],
)
def __call__(self, x):
x = np.array(x)
augmented = self.transform(image=x)
return Image.fromarray(augmented['image'])
# Define your custom transform
train_transform = T.Compose([
# crop/resize
T.RandomCrop(size=(WIDTH, WIDTH), padding_mode='edge'),
# basic transforms
T.RandomVerticalFlip(p=0.30),
T.RandomHorizontalFlip(p=0.30),
OneOf(
p=0.30,
transforms=[
T.RandomAffine(
degrees=(-15, 15),
shear=(-0.3, 0.3),
scale=(0.8, 1.2),
translate=(0.1, 0.3),
interpolation=InterpolationMode.BICUBIC,
),
T.RandomRotation(degrees=(90, 270), interpolation=InterpolationMode.BICUBIC),
T.RandomPerspective(p=1.0, distortion_scale=0.3, interpolation=InterpolationMode.BICUBIC),
],
),
# albumentations transforms
# T.Lambda(lambda x: AlbumentationsTransforms()(x)),
# generate ground truth
T.Lambda(lambda x: apply_preprocess(x=x, scale=SCALE)), # Add wavelet transform
])
val_transform = T.Compose([
T.Lambda(lambda x: apply_preprocess(x=x, scale=SCALE)), # Add wavelet transform
])
custom_val_dataset = [
# other set
# {'hr': 'test_images/comic.bmp', 'crop': (140, 105, 140 + WIDTH, 105 + WIDTH)},
# {'hr': 'test_images/butterfly.bmp', 'crop': (150, 150, 150 + WIDTH, 150 + WIDTH)},
# train set
# {'hr': 'test_images/tiger.png', 'crop': (740, 600, 740 + WIDTH, 600 + WIDTH)},
# validation dataset
{'hr': 'test_images/books.png', 'crop': (0, 0, 0 + WIDTH, 0 + WIDTH)},
{'hr': 'test_images/cat.png', 'crop': (800, 900, 800 + WIDTH, 900 + WIDTH)},
{'hr': 'test_images/cat_2.png', 'crop': (520, 500, 520 + WIDTH, 500 + WIDTH)},
{'hr': 'test_images/lion.png', 'crop': (970, 780, 970 + WIDTH, 780 + WIDTH)},
{'hr': 'test_images/train.png', 'crop': (180, 700, 180 + WIDTH, 700 + WIDTH)},
{'hr': 'test_images/spiral.png', 'crop': (950, 150, 950 + WIDTH, 150 + WIDTH)},
{'hr': 'test_images/wolf.png', 'crop': (1200, 300, 1200 + WIDTH, 300 + WIDTH)},
{'hr': 'test_images/buda.png', 'crop': (1225, 180, 1225 + WIDTH, 180 + WIDTH)},
{'hr': 'test_images/aligator.png', 'crop': (100, 700, 100 + WIDTH, 700 + WIDTH)},
{'hr': 'test_images/butterfly.png', 'crop': (900, 1000, 900 + WIDTH, 1000 + WIDTH)},
]
class Dataset(torch.utils.data.Dataset):
def __init__(self, dataset, transform=None, multiplier=1, _type='train'):
self._type = _type
self.dataset = dataset
self.transform = transform
self.multiplier = multiplier
def __getitem__(self, idx):
idx = idx % len(self.dataset)
input_data = Image.open(fp=self.dataset[idx]['hr']).convert("YCbCr")
if self._type != 'train':
input_data = input_data.crop(self.dataset[idx]['crop'])
if self.transform:
input_data = self.transform(input_data)
return input_data
def __len__(self):
return len(self.dataset) * self.multiplier
def validate_model(model, dataloader, epoch=None, save_image=False):
model.eval()
total_psnr, total_ssim, num_batches = 0, 0, 0
with torch.no_grad():
for image_hr, _, image_bic in dataloader:
image_bic = image_bic.to(device)
image_hr = image_hr.to(device)
outputs = model(wt(image_bic))
batch_psnr = psnr(iwt(outputs), image_hr)
batch_ssim = ssim(iwt(outputs), image_hr)
num_batches += 1
total_psnr += batch_psnr.item()
total_ssim += batch_ssim.item()
image_pil, caption = None, None
if save_image and epoch:
# image_array = np.array(iwt(outputs)[0].detach().cpu() * 255).astype(np.uint8)
image_array = np.array((iwt(outputs)[0].detach().cpu() + image_bic[0].detach().cpu()) * 255).astype(np.uint8)
image_pil = Image.fromarray(image_array, mode='L')
batch_psnr = psnr(iwt(outputs)[0], image_hr[0])
batch_ssim = ssim(iwt(outputs)[0], image_hr[0])
caption = f"{batch_psnr.item():.4f}/{batch_ssim.item():.4f}"
image_pil.save(f'results/sr_{epoch}.jpg')
#
# image_hr_array = np.array(image_hr[0].detach().cpu() * 255).astype(np.uint8)
# image_hr_pil = Image.fromarray(image_hr_array, mode='L')
# image_hr_pil.save(f'results/hr.jpg')
#
# image_bic_array = np.array(image_bic[0].detach().cpu() * 255).astype(np.uint8)
# image_bic_pil = Image.fromarray(image_bic_array, mode='L')
# image_bic_pil.save(f'results/bic.jpg')
return total_psnr / num_batches, total_ssim / num_batches, image_pil, caption
def main():
dataset = load_dataset("eugenesiow/Div2k") # Load the dataset
train_dataset = Dataset(dataset=dataset['train'], transform=train_transform, multiplier=1, _type='train')
val_dataset = Dataset(dataset=custom_val_dataset, _type='val', transform=val_transform)
# val_dataset = Dataset(dataset=dataset['validation'], transform=val_transform)
# PyTorch dataloaders
dataloader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=16, pin_memory=True)
val_dataloader = DataLoader(dataset=val_dataset, batch_size=11, shuffle=False, num_workers=2, pin_memory=True)
model = WaveletBasedResidualAttentionNet(width=WIDTH).to(device)
model.initialize_weights()
# model.load_state_dict(torch.load("final_model.pth"))
# wandb.init(project="wransr", entity="brunobelloni", save_code=True)
# wandb.watch(model)
num_epochs = 200
val_psnr, val_ssim = 0, 0 # Validation metrics
criterion = nn.L1Loss()
optimizer = torch.optim.Adam(
lr=0.001,
eps=1e-08,
weight_decay=0,
betas=(0.9, 0.999),
params=model.parameters(),
)
# Define the learning rate scheduler
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer=optimizer, step_size=40, gamma=0.1)
for epoch in range(num_epochs):
model.train()
for index, (image_hr, _, image_bic) in enumerate((pbar := tqdm(dataloader))):
image_hr = image_hr.to(device)
image_bic = image_bic.to(device)
optimizer.zero_grad() # zero the parameter gradients
# forward + backward + optimize
outputs = model(wt(image_bic)) # Forward pass
loss = criterion(outputs, wt(image_hr - image_bic)) # Compute loss
loss.backward() # Backward pass
optimizer.step() # Update weights
psnr_value = psnr(iwt(outputs), image_hr)
ssim_value = ssim(iwt(outputs), image_hr)
log = {
"epoch": epoch + 1,
"loss": loss.item(),
"val_psnr": val_psnr,
"val_ssim": val_ssim,
"psnr": psnr_value.item(),
"ssim": ssim_value.item(),
"lr": optimizer.param_groups[0]['lr'],
}
pbar.set_postfix(**log)
if index >= (pbar.total - 1):
val_psnr, val_ssim, image, caption = validate_model(
model=model,
epoch=epoch + 1,
save_image=True,
dataloader=val_dataloader,
)
if image:
log["output_image"] = wandb.Image(data_or_path=image, caption=caption)
# wandb.log(log)
lr_scheduler.step() # Adjust the learning rate
# torch.save(model.state_dict(), f'checkpoint/model_{(epoch + 1)}.pth')
torch.save(model.state_dict(), 'checkpoint/final_model.pth')
if __name__ == '__main__':
main()