forked from onnx/onnx-mlir
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRunONNXModelZoo.py
executable file
·735 lines (657 loc) · 23.9 KB
/
RunONNXModelZoo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0
####################### RunONNXModelZoo.py #####################################
#
# Copyright 2022 The IBM Research Authors.
#
################################################################################
#
# This script is used to check models in https://github.com/onnx/models.
#
################################################################################
import argparse
import difflib
import json
import logging
import os
import shutil
import signal
import subprocess
import sys
import tarfile
import tempfile
from datetime import datetime
from joblib import Parallel, delayed
from pathlib import Path
from urllib.parse import urlsplit
"""
Note:
- This script will clone https://github.com/onnx/models or reset the local repo.
- This script will call RunONNXModel.py. Make sure to put RunONNXModel.py and this script in the same folder.
- Environment variable ONNX_MLIR_HOME is needed to find onnx-mlir.
- By default, the script checks all models in the model zoo.
- Use `-m model_name` to check a list of selected models.
Example:
$ ONNX_MLIR_HOME=/onnx-mlir/build/Release/ /onnx-mlir/utils/RunONNXModelZoo.py -m mnist-8 -c "-O3 --march=z16"
"""
if not os.environ.get("ONNX_MLIR_HOME", None):
raise RuntimeError(
"Environment variable ONNX_MLIR_HOME is not set, please set it to the path to "
"the HOME directory for onnx-mlir. The HOME directory for onnx-mlir refers to "
"the parent folder containing the bin, lib, etc. sub-folders in which ONNX-MLIR "
"executables and libraries can be found."
)
LOG_LEVEL = {
"debug": logging.DEBUG,
"info": logging.INFO,
"warning": logging.WARNING,
"error": logging.ERROR,
"critical": logging.CRITICAL,
}
# For Parallel verbose
VERBOSITY_LEVEL = {"debug": 10, "info": 5, "warning": 1, "error": 0, "critical": 0}
ONNX_MODEL_ZOO_URL = "https://github.com/onnx/models"
ONNX_MODEL_ZOO_DOWNLOAD = ONNX_MODEL_ZOO_URL + "/raw/main"
"""Commands will be called in this script.
"""
# modelzoo has been completely restructured and the original models are now under
# the "validated" directory. We could check all the new models as well but that
# would take very long (about 6 hours on the Jenkins CI) so we still only check
# the original models under "validated".
FIND_MODEL_PATHS_CMD = ["find", "validated", "-type", "f", "-name", "*.tar.gz"]
GIT_CMD = ["git"]
# Use curl instead of wget since most systems have curl preinstalled
# and curl is more flexible than wget
CURL_CMD = ["curl", "--insecure", "--retry", "50", "--location", "--silent"]
# RunONNXModel.py is assumed to be in the same directory where
# RunONNXModelZoo.py is (sys.path[0])
RUN_ONNX_MODEL_CMD = [os.path.join(sys.path[0], "RunONNXModel.py")]
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--compile-args", help="Options passing to onnx-mlir to compile a model."
)
parser.add_argument(
"-C", "--compile-only", action="store_true", help="Only compile models."
)
parser.add_argument(
"-f",
"--force-clean",
action="store_true",
default=False,
help="Force clean existing model zoo repo.",
)
parser.add_argument(
"-H",
"--Html",
default=None,
const="modelzoo.html",
action="store",
nargs="?",
help="Generate model zoo test report in html.",
)
parser.add_argument(
"-j",
"--jobs",
type=int,
default=1,
help="The number of processes in parallel."
" The larger JOBS is, the more disk space is needed"
" for downloaded onnx models. Default 1.",
)
parser.add_argument(
"-k", "--keep-models", action="store_true", help="Keep the pulled models"
)
parser.add_argument(
"-l",
"--log-level",
choices=["debug", "info", "warning", "error", "critical"],
default="info",
help="log level, default info",
)
parser.add_argument(
"--log-to-file",
action="store",
nargs="?",
const="compilation.log",
default=None,
help="Output compilation messages to file, default compilation.log",
)
parser.add_argument(
"-m",
"--model",
metavar="model_name",
help="Only process a list of models in the ONNX model zoo."
" Passing the name of the models, e.g. 'mnist-8 yolov4'."
" Use -p to know model names. Without -m, the script "
" checks all models in the model zoo.",
)
parser.add_argument(
"-p",
"--print-paths",
action="store_true",
help="Only print model paths in the model zoo.",
)
parser.add_argument(
"-q",
"--historydir",
default="",
help="History dir for previously published results, no default.",
)
parser.add_argument(
"-r",
"--reportdir",
default=os.getcwd(),
help="Report dir for generating tests results, default cwd.",
)
parser.add_argument(
"-w",
"--workdir",
default=os.getcwd(),
help="Work dir for cloning and downloading, default cwd.",
)
return parser.parse_args()
# log to stderr so that stdout can be used for check results
def get_logger():
logging.basicConfig(
stream=sys.stderr,
level=LOG_LEVEL[args.log_level],
format="[%(asctime)s] %(levelname)s: %(message)s",
)
return logging.getLogger("RunONNXModelZoo.py")
args = get_args()
logger = get_logger()
def execute_commands(cmds, cwd=None, tmout=None):
logger.debug("cmd={} cwd={}".format(" ".join(cmds), cwd))
out = subprocess.Popen(
cmds, cwd=cwd, stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
try:
stdout, stderr = out.communicate(timeout=tmout)
except subprocess.TimeoutExpired:
# Kill the child process and finish communication
out.kill()
stdout, stderr = out.communicate()
return (
False,
(
stderr.decode("utf-8")
+ stdout.decode("utf-8")
+ "Timeout after {} seconds".format(tmout)
),
)
msg = stderr.decode("utf-8") + stdout.decode("utf-8")
if out.returncode == -signal.SIGSEGV:
return (False, msg + "Segfault")
if out.returncode != 0:
return (False, msg + "Return code {}".format(out.returncode))
return (True, stdout.decode("utf-8"))
def execute_commands_to_file(cmds, ofile, cwd=None):
logger.debug(" ".join(cmds))
with open(ofile, "w") as output:
server = subprocess.Popen(
cmds, cwd=cwd, stdout=output, stderr=subprocess.STDOUT
)
stdout, stderr = server.communicate()
# Deprecated models according to: https://github.com/onnx/models/pull/389
deprecated_models = {
"bvlcalexnet-3",
"caffenet-3",
"densenet-3",
"emotion-ferplus-2",
"inception-v1-3",
"inception-v2-3",
"mnist-1",
"rcnn-ilsvrc13-3",
"resnet50-caffe2-v1-3",
"shufflenet-3",
"vgg19-caffe2-3",
"zfnet512-3",
}
int8_models = {
"bvlcalexnet-12-int8",
"caffenet-12-int8",
"densenet-12-int8",
"efficientnet-lite4-11-int8",
"FasterRCNN-12-int8",
"fcn-resnet50-12-int8",
"googlenet-12-int8",
"inception-v1-12-int8",
"MaskRCNN-12-int8",
"mnist-12-int8",
"mobilenetv2-12-int8",
"resnet50-v1-12-int8",
"ResNet101-DUC-12-int8",
"shufflenet-v2-12-int8",
"ssd-12-int8",
"ssd_mobilenet_v1_12-int8",
"squeezenet1.0-12-int8",
"vgg16-12-int8",
"yolov3-12-int8",
"zfnet512-12-int8",
}
excluded_models = deprecated_models.union(int8_models)
# Additional information passed to RunONNXModel.py.
# For example: "t5-encoder-12": ['--shape-info=0:1x2,1:1x2x768']
RunONNXModel_additional_options = {}
# States
TEST_SKIPPED = 0
TEST_FAILED = 1
TEST_PASSED = 2
# Clone hypershift and related source repos
def clone_modelzoo_source(repo_url, work_dir):
repo_dir = os.path.join(work_dir, Path(urlsplit(repo_url).path).stem)
# Remove repo directory if -f|--force-clean specified
if args.force_clean and Path(repo_dir).exists():
logger.debug("repo {} force cleaned".format(repo_dir))
shutil.rmtree(repo_dir)
# If .git exists, assume repo already cloned
if (Path(repo_dir) / ".git").is_dir():
logger.debug("repo {} reset".format(repo_dir))
execute_commands(GIT_CMD + ["reset", "--hard"], cwd=repo_dir)
execute_commands(GIT_CMD + ["clean", "-xdf"], cwd=repo_dir)
# Either repo doesn't exist, or it's invalid
else:
if Path(repo_dir).exists():
logger.error("repo {} not a git repo, no overwrite".format(repo_dir))
return None
logger.debug("clone into {}".format(repo_dir))
execute_commands(GIT_CMD + ["clone", repo_url, repo_dir])
return repo_dir
# It would have been much simpler if the ONNX_HUB_MANIFEST.json
# has been kept up to date.
def obtain_all_model_paths(repo_dir):
_, model_paths = execute_commands(FIND_MODEL_PATHS_CMD, cwd=repo_dir)
model_paths = model_paths.split("\n")
# Remove empty paths and prune './' in a path.
model_paths = [
(path[2:] if path.startswith("./") else path) for path in model_paths if path
]
model_names = [
path.split("/")[-1][: -len(".tar.gz")] for path in model_paths
] # remove .tar.gz
excluded_names = set(model_names).intersection(excluded_models)
excluded_msg = ""
if len(excluded_names) != 0:
excluded_msg = (
" where "
+ str(len(excluded_names))
+ " models are not checked because of old opsets or quantization"
)
logger.debug(
"There are {} models in the ONNX model zoo{}.".format(
len(model_paths), excluded_msg
)
)
return model_names, model_paths
def check_model(model_path, model_name, compile_args, report_dir):
passed = TEST_SKIPPED
with tempfile.TemporaryDirectory() as tmpdir:
# untar
logger.debug("Extracting the .tar.gz to {}".format(tmpdir))
with tarfile.open(model_path, "r:gz") as tgz:
tgz.extractall(tmpdir)
# ignore files starting with "." created by Mac OSX!
_, onnx_files = execute_commands(
["find", tmpdir, "-type", "f", "-name", "[^.]*.onnx"]
)
# logger.debug(onnx_files)
# temporary folder's structure:
# - model.onnx
# - test_data_set_0
# - test_data_set_1
# - test_data_set_2
# - ...
# - test_data_set_n
# Check .onnx file.
if len(onnx_files) == 0:
logger.warning("There is no .onnx file for this model. Ignored.")
return TEST_SKIPPED
onnx_file = onnx_files.split("\n")[0]
# Check data sets.
has_data_sets = False
_, data_sets = execute_commands(
["find", tmpdir, "-type", "d", "-name", "test_data_set*"]
)
data_sets_list = [s for s in data_sets.split("\n") if s]
if len(data_sets_list) > 0:
has_data_sets = True
# Sort the list to get test_data_set_0 by default since other data
# sets are sometimes ill-formed.
data_sets_list.sort()
data_set = data_sets_list[0]
else:
# if there is no `test_data_set` subfolder, find a folder containing .pb files.
_, pb_files = execute_commands(
["find", tmpdir, "-name", "*.pb", "-printf", "%h\n"]
)
if len(pb_files) > 0:
has_data_sets = True
data_set = pb_files.split("\n")[0]
if not has_data_sets:
logger.warning(
"The model {} does not have test data sets. Will check the model with random data.".format(
model_name
)
)
# compile, run and verify.
logger.debug("Checking the model {} ...".format(model_name))
compile_options = "--compile-args=" + (compile_args if compile_args else "-O3")
options = [compile_options]
if has_data_sets:
options += ["--verify=ref"]
options += ["--verify-every-value"]
options += ["--load-ref={}".format(data_set)]
if model_name in RunONNXModel_additional_options:
options += RunONNXModel_additional_options[model_name]
if args.compile_only:
options += ["--compile-only"]
options += ["--model={}".format(onnx_file)]
if args.log_to_file:
options += ["--log-to-file={}".format(args.log_to_file)]
# Wait up to 30 minutes for compilation and inference to finish
ok, msg = execute_commands(RUN_ONNX_MODEL_CMD + options, tmout=1800)
state = TEST_PASSED if ok else TEST_FAILED
logger.info("[{}] check {}".format(model_name, "passed" if ok else "failed"))
logger.debug("[{}] {}".format(model_name, msg))
if args.Html:
with open(os.path.join(report_dir, model_name + ".html"), "w") as out:
out.write("<html><body><pre>\n")
out.write(datetime.now().strftime("%Y-%m-%d %H:%M:%S") + "\n\n")
out.write(model_name + "\n\n")
out.write(msg)
out.write("</pre></body></html>\n")
return state
def pull_and_check_model(model_path, compile_args, keep_model, work_dir, report_dir):
state = TEST_SKIPPED
# Must get logger again since this function is run by Parallel
# in a separate process so logger is not propagated.
logger = get_logger()
# Ignore deprecated models.
model_tar_gz = os.path.join(work_dir, model_path.split("/")[-1])
model_name = model_path.split("/")[-1][: -len(".tar.gz")] # remove .tar.gz
if model_name in excluded_models:
logger.warning("[{}] is excluded. Ignored.".format(model_name))
return state, model_name
# pull the model.
model_url = ONNX_MODEL_ZOO_DOWNLOAD + "/" + model_path
logger.debug("Downloading {}".format(model_url))
ok, _ = execute_commands(
CURL_CMD + [model_url, "--time-cond", model_tar_gz, "--output", model_tar_gz],
cwd=work_dir,
)
# check the model.
state = check_model(model_tar_gz, model_name, compile_args, report_dir)
if not keep_model:
# remove the model to save the storage space.
os.remove(model_tar_gz)
return state, model_name
def output_report(
history_dir,
report_dir,
skipped_models,
tested_models,
passed_models,
failed_models,
total_models,
):
# Ignore path in args.Html
html_file = os.path.basename(args.Html) # foo.html
json_file = os.path.splitext(html_file)[0] + ".json" # foo.json
hist_file = json_file + ".html" # foo.json.html
# We used to save the history json in the publish directory but that
# has problem with concurrent builds. After the publish directory is
# mounted into the model zoo check container and before we come here
# to read the json file, another non-merging build could finish and
# do its publishing (actually just copy and re-publish). This causes
# the publish directory to be deleted and recreated. So we lost the
# json file and our history gets reset.
#
# So now we save the history json in the job directory so it won't be
# affected by concurrent builds. Note that reading/writing the json
# file is not protected since non-merging builds don't touch it. Other
# merging builds won't be a problem either since only one merging build
# can run (previously running one gets aborted).
json_path = os.path.join(history_dir, json_file)
try:
with open(json_path, "r") as jf:
hist = json.load(jf)
prev = hist[0]
except:
hist = []
prev = {
"_mesg": "",
"author": "",
"commit": "",
"date": "",
"failed": {"_models": [], "dropped": [], "entered": []},
"passed": {"_models": [], "dropped": [], "entered": []},
"skipped": {"_models": [], "dropped": [], "entered": []},
"total": {"_models": [], "dropped": [], "entered": []},
}
curr = {
"_mesg": "",
"author": "",
"commit": "",
"date": "",
"failed": {},
"passed": {},
"skipped": {},
"total": {},
}
curr["_mesg"] = os.getenv("ONNX_MLIR_HEAD_COMMIT_MESSAGE", "")
curr["author"] = os.getenv("ONNX_MLIR_HEAD_COMMIT_AUTHOR", "")
curr["commit"] = os.getenv("ONNX_MLIR_HEAD_COMMIT_HASH", "")
curr["date"] = os.getenv("ONNX_MLIR_HEAD_COMMIT_DATE", "")
curr["failed"]["_models"] = failed_models
curr["passed"]["_models"] = passed_models
curr["skipped"]["_models"] = skipped_models
curr["total"]["_models"] = total_models
curr["failed"]["dropped"] = [
x for x in prev["failed"]["_models"] if x not in failed_models
]
curr["passed"]["dropped"] = [
x for x in prev["passed"]["_models"] if x not in passed_models
]
curr["skipped"]["dropped"] = [
x for x in prev["skipped"]["_models"] if x not in skipped_models
]
curr["total"]["dropped"] = [
x for x in prev["total"]["_models"] if x not in total_models
]
curr["failed"]["entered"] = [
x for x in failed_models if x not in prev["failed"]["_models"]
]
curr["passed"]["entered"] = [
x for x in passed_models if x not in prev["passed"]["_models"]
]
curr["skipped"]["entered"] = [
x for x in skipped_models if x not in prev["skipped"]["_models"]
]
curr["total"]["entered"] = [
x for x in total_models if x not in prev["total"]["_models"]
]
# Write history json. Keep last 100 commits
HIST_MAX = 100
hist_json = [curr] + hist[: HIST_MAX - 1]
with open(json_path, "w") as jf:
json.dump(hist_json, jf)
# Write history html
with open(os.path.join(report_dir, hist_file), "w") as html:
html.write(
'<div id="history"></div>\n'
+ "<style>\n"
+ " .renderjson a { text-decoration: none; }\n"
+ " .renderjson .disclosure { font-size: 75%; }\n"
+ "</style>\n"
+ '<script type="text/javascript" src="renderjson.js"></script>\n'
+ "<script>\n"
+ ' renderjson.set_icons("\\u{2795}", "\\u{2796}");\n'
+ " renderjson.set_sort_objects(true);\n"
+ " renderjson.set_show_to_level(3);\n"
+ ' document.getElementById("history").appendChild(renderjson('
+ json.dumps(hist_json)
+ "));\n"
+ "</script>\n"
)
# Write report html
with open(os.path.join(report_dir, html_file), "w") as html:
html.write(
"<html>\n"
+ "<head>\n"
+ "<style>\n"
+ "table, th, td {\n"
+ " border: 1px solid black;\n"
+ " border-collapse: collapse;\n"
+ " padding: 10px;\n"
+ " vertical-align: top;\n"
+ "}\n"
+ "table.sticky {\n"
+ " position: -webkit-sticky;\n"
+ " position: sticky;\n"
+ " top: 0;\n"
+ " background-color: #FFF;\n"
+ "}\n"
+ "</style>\n"
+ "</head>\n"
+ "<body>\n"
+ '<table class="sticky">\n'
)
t = ["Skipped", "Passed", "Failed"]
for i, s in enumerate(
[
skipped_models,
list(
map(
lambda m: (
'<a href="'
+ m
+ '.html" '
+ 'target="output">'
+ m
+ "</a>"
),
passed_models,
)
),
list(
map(
lambda m: (
'<a href="'
+ m
+ '.html" '
+ 'target="output">'
+ m
+ "</a>"
),
failed_models,
)
),
]
):
html.write(
" <tr>\n"
+ " <td>{}</td>\n".format(t[i])
+ " <td>{}</td>\n".format(len(s))
+ " <td>{}</td>\n".format(", ".join(s))
+ " </tr>\n"
)
html.write(
" <tr>\n"
+ " <td>Total</td>\n"
+ " <td>{}</td>\n".format(len(skipped_models) + len(tested_models))
+ ' <td>[ <a href="'
+ hist_file
+ '" target="output">History</a> ]</td>\n'
+ " </tr>\n"
+ "</table>\n"
+ '<iframe name="output" scrolling="auto"'
+ ' style="border:0px;width:100%;height:100%">\n'
+ "</body>\n"
+ "</html>\n"
)
def main():
work_dir = os.path.realpath(args.workdir)
repo_dir = clone_modelzoo_source(ONNX_MODEL_ZOO_URL, work_dir)
if not repo_dir:
logger.error("failed to clone or reset model zoo repo")
return
# Collect all model paths in the model zoo
all_model_names, all_model_paths = obtain_all_model_paths(repo_dir)
if args.print_paths:
for path in all_model_paths:
print(path)
return
# By default, run all models in the model zoo.
# But, if `-m` is specified, the list of models specified are split
# into models_to_run, e.g.,
# models_to_run = ['mnist-8', 'yolov4', 'resnet50-v2-7']
models_to_run = all_model_names
if args.model:
models_to_run = args.model.split()
target_model_paths = set()
for name in models_to_run:
if name not in all_model_names:
logger.error(
"Model",
name,
"not found. Do you mean one of the following? ",
difflib.get_close_matches(name, all_model_names, len(all_model_names)),
)
return
for m in all_model_paths:
if name in m:
target_model_paths.add(m)
# Start processing the models.
report_dir = os.path.realpath(args.reportdir)
results = Parallel(n_jobs=args.jobs, verbose=VERBOSITY_LEVEL[args.log_level])(
delayed(pull_and_check_model)(
path, args.compile_args, args.keep_models, work_dir, report_dir
)
for path in target_model_paths
)
# Report the results.
skipped_models = sorted(excluded_models)
tested_models = sorted({r[1] for r in results if r[0] != TEST_SKIPPED})
passed_models = sorted({r[1] for r in results if r[0] == TEST_PASSED})
failed_models = sorted({r[1] for r in results if r[0] == TEST_FAILED})
total_models = sorted(skipped_models + tested_models)
if args.Html:
# Output report files
history_dir = os.path.realpath(args.historydir)
output_report(
history_dir,
report_dir,
skipped_models,
tested_models,
passed_models,
failed_models,
total_models,
)
# Output summary to stdout for the badge text
print(
"Total:{} Skipped:{} Passed:{} Failed:{}".format(
len(skipped_models) + len(tested_models),
len(skipped_models),
len(passed_models),
len(failed_models),
)
)
else:
print(
"{} models tested: {}\n".format(
len(tested_models), ", ".join(tested_models)
)
)
print(
"{} models passed: {}\n".format(
len(passed_models), ", ".join(passed_models)
)
)
print(
"{} models failed: {}\n".format(
len(failed_models), ", ".join(failed_models)
)
)
if __name__ == "__main__":
main()