-
Notifications
You must be signed in to change notification settings - Fork 281
/
Copy pathmain.py
396 lines (322 loc) · 17.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import tensorflow.contrib.slim as slim
import os
from lib.model import data_loader, generator, SRGAN, test_data_loader, inference_data_loader, save_images, SRResnet
from lib.ops import *
import math
import time
import numpy as np
Flags = tf.app.flags
# The system parameter
Flags.DEFINE_string('output_dir', None, 'The output directory of the checkpoint')
Flags.DEFINE_string('summary_dir', None, 'The dirctory to output the summary')
Flags.DEFINE_string('mode', 'train', 'The mode of the model train, test.')
Flags.DEFINE_string('checkpoint', None, 'If provided, the weight will be restored from the provided checkpoint')
Flags.DEFINE_boolean('pre_trained_model', False, 'If set True, the weight will be loaded but the global_step will still '
'be 0. If set False, you are going to continue the training. That is, '
'the global_step will be initiallized from the checkpoint, too')
Flags.DEFINE_string('pre_trained_model_type', 'SRResnet', 'The type of pretrained model (SRGAN or SRResnet)')
Flags.DEFINE_boolean('is_training', True, 'Training => True, Testing => False')
Flags.DEFINE_string('vgg_ckpt', './vgg19/vgg_19.ckpt', 'path to checkpoint file for the vgg19')
Flags.DEFINE_string('task', None, 'The task: SRGAN, SRResnet')
# The data preparing operation
Flags.DEFINE_integer('batch_size', 16, 'Batch size of the input batch')
Flags.DEFINE_string('input_dir_LR', None, 'The directory of the input resolution input data')
Flags.DEFINE_string('input_dir_HR', None, 'The directory of the high resolution input data')
Flags.DEFINE_boolean('flip', True, 'Whether random flip data augmentation is applied')
Flags.DEFINE_boolean('random_crop', True, 'Whether perform the random crop')
Flags.DEFINE_integer('crop_size', 24, 'The crop size of the training image')
Flags.DEFINE_integer('name_queue_capacity', 2048, 'The capacity of the filename queue (suggest large to ensure'
'enough random shuffle.')
Flags.DEFINE_integer('image_queue_capacity', 2048, 'The capacity of the image queue (suggest large to ensure'
'enough random shuffle')
Flags.DEFINE_integer('queue_thread', 10, 'The threads of the queue (More threads can speedup the training process.')
# Generator configuration
Flags.DEFINE_integer('num_resblock', 16, 'How many residual blocks are there in the generator')
# The content loss parameter
Flags.DEFINE_string('perceptual_mode', 'VGG54', 'The type of feature used in perceptual loss')
Flags.DEFINE_float('EPS', 1e-12, 'The eps added to prevent nan')
Flags.DEFINE_float('ratio', 0.001, 'The ratio between content loss and adversarial loss')
Flags.DEFINE_float('vgg_scaling', 0.0061, 'The scaling factor for the perceptual loss if using vgg perceptual loss')
# The training parameters
Flags.DEFINE_float('learning_rate', 0.0001, 'The learning rate for the network')
Flags.DEFINE_integer('decay_step', 500000, 'The steps needed to decay the learning rate')
Flags.DEFINE_float('decay_rate', 0.1, 'The decay rate of each decay step')
Flags.DEFINE_boolean('stair', False, 'Whether perform staircase decay. True => decay in discrete interval.')
Flags.DEFINE_float('beta', 0.9, 'The beta1 parameter for the Adam optimizer')
Flags.DEFINE_integer('max_epoch', None, 'The max epoch for the training')
Flags.DEFINE_integer('max_iter', 1000000, 'The max iteration of the training')
Flags.DEFINE_integer('display_freq', 20, 'The diplay frequency of the training process')
Flags.DEFINE_integer('summary_freq', 100, 'The frequency of writing summary')
Flags.DEFINE_integer('save_freq', 10000, 'The frequency of saving images')
FLAGS = Flags.FLAGS
# Print the configuration of the model
print_configuration_op(FLAGS)
# Check the output_dir is given
if FLAGS.output_dir is None:
raise ValueError('The output directory is needed')
# Check the output directory to save the checkpoint
if not os.path.exists(FLAGS.output_dir):
os.mkdir(FLAGS.output_dir)
# Check the summary directory to save the event
if not os.path.exists(FLAGS.summary_dir):
os.mkdir(FLAGS.summary_dir)
# The testing mode
if FLAGS.mode == 'test':
# Check the checkpoint
if FLAGS.checkpoint is None:
raise ValueError('The checkpoint file is needed to performing the test.')
# In the testing time, no flip and crop is needed
if FLAGS.flip == True:
FLAGS.flip = False
if FLAGS.crop_size is not None:
FLAGS.crop_size = None
# Declare the test data reader
test_data = test_data_loader(FLAGS)
inputs_raw = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='inputs_raw')
targets_raw = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='targets_raw')
path_LR = tf.placeholder(tf.string, shape=[], name='path_LR')
path_HR = tf.placeholder(tf.string, shape=[], name='path_HR')
with tf.variable_scope('generator'):
if FLAGS.task == 'SRGAN' or FLAGS.task == 'SRResnet':
gen_output = generator(inputs_raw, 3, reuse=False, FLAGS=FLAGS)
else:
raise NotImplementedError('Unknown task!!')
print('Finish building the network')
with tf.name_scope('convert_image'):
# Deprocess the images outputed from the model
inputs = deprocessLR(inputs_raw)
targets = deprocess(targets_raw)
outputs = deprocess(gen_output)
# Convert back to uint8
converted_inputs = tf.image.convert_image_dtype(inputs, dtype=tf.uint8, saturate=True)
converted_targets = tf.image.convert_image_dtype(targets, dtype=tf.uint8, saturate=True)
converted_outputs = tf.image.convert_image_dtype(outputs, dtype=tf.uint8, saturate=True)
with tf.name_scope('encode_image'):
save_fetch = {
"path_LR": path_LR,
"path_HR": path_HR,
"inputs": tf.map_fn(tf.image.encode_png, converted_inputs, dtype=tf.string, name='input_pngs'),
"outputs": tf.map_fn(tf.image.encode_png, converted_outputs, dtype=tf.string, name='output_pngs'),
"targets": tf.map_fn(tf.image.encode_png, converted_targets, dtype=tf.string, name='target_pngs')
}
# Define the weight initiallizer (In inference time, we only need to restore the weight of the generator)
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='generator')
weight_initiallizer = tf.train.Saver(var_list)
# Define the initialization operation
init_op = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# Load the pretrained model
print('Loading weights from the pre-trained model')
weight_initiallizer.restore(sess, FLAGS.checkpoint)
max_iter = len(test_data.inputs)
print('Evaluation starts!!')
for i in range(max_iter):
input_im = np.array([test_data.inputs[i]]).astype(np.float32)
target_im = np.array([test_data.targets[i]]).astype(np.float32)
path_lr = test_data.paths_LR[i]
path_hr = test_data.paths_HR[i]
results = sess.run(save_fetch, feed_dict={inputs_raw: input_im, targets_raw: target_im,
path_LR: path_lr, path_HR: path_hr})
filesets = save_images(results, FLAGS)
for i, f in enumerate(filesets):
print('evaluate image', f['name'])
# the inference mode (just perform super resolution on the input image)
elif FLAGS.mode == 'inference':
# Check the checkpoint
if FLAGS.checkpoint is None:
raise ValueError('The checkpoint file is needed to performing the test.')
# In the testing time, no flip and crop is needed
if FLAGS.flip == True:
FLAGS.flip = False
if FLAGS.crop_size is not None:
FLAGS.crop_size = None
# Declare the test data reader
inference_data = inference_data_loader(FLAGS)
inputs_raw = tf.placeholder(tf.float32, shape=[1, None, None, 3], name='inputs_raw')
path_LR = tf.placeholder(tf.string, shape=[], name='path_LR')
with tf.variable_scope('generator'):
if FLAGS.task == 'SRGAN' or FLAGS.task == 'SRResnet':
gen_output = generator(inputs_raw, 3, reuse=False, FLAGS=FLAGS)
else:
raise NotImplementedError('Unknown task!!')
print('Finish building the network')
with tf.name_scope('convert_image'):
# Deprocess the images outputed from the model
inputs = deprocessLR(inputs_raw)
outputs = deprocess(gen_output)
# Convert back to uint8
converted_inputs = tf.image.convert_image_dtype(inputs, dtype=tf.uint8, saturate=True)
converted_outputs = tf.image.convert_image_dtype(outputs, dtype=tf.uint8, saturate=True)
with tf.name_scope('encode_image'):
save_fetch = {
"path_LR": path_LR,
"inputs": tf.map_fn(tf.image.encode_png, converted_inputs, dtype=tf.string, name='input_pngs'),
"outputs": tf.map_fn(tf.image.encode_png, converted_outputs, dtype=tf.string, name='output_pngs')
}
# Define the weight initiallizer (In inference time, we only need to restore the weight of the generator)
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='generator')
weight_initiallizer = tf.train.Saver(var_list)
# Define the initialization operation
init_op = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
# Load the pretrained model
print('Loading weights from the pre-trained model')
weight_initiallizer.restore(sess, FLAGS.checkpoint)
max_iter = len(inference_data.inputs)
print('Evaluation starts!!')
for i in range(max_iter):
input_im = np.array([inference_data.inputs[i]]).astype(np.float32)
path_lr = inference_data.paths_LR[i]
results = sess.run(save_fetch, feed_dict={inputs_raw: input_im, path_LR: path_lr})
filesets = save_images(results, FLAGS)
for i, f in enumerate(filesets):
print('evaluate image', f['name'])
# The training mode
elif FLAGS.mode == 'train':
# Load data for training and testing
# ToDo Add online downscaling
data = data_loader(FLAGS)
print('Data count = %d' % (data.image_count))
# Connect to the network
if FLAGS.task == 'SRGAN':
Net = SRGAN(data.inputs, data.targets, FLAGS)
elif FLAGS.task =='SRResnet':
Net = SRResnet(data.inputs, data.targets, FLAGS)
else:
raise NotImplementedError('Unknown task type')
print('Finish building the network!!!')
# Convert the images output from the network
with tf.name_scope('convert_image'):
# Deprocess the images outputed from the model
inputs = deprocessLR(data.inputs)
targets = deprocess(data.targets)
outputs = deprocess(Net.gen_output)
# Convert back to uint8
converted_inputs = tf.image.convert_image_dtype(inputs, dtype=tf.uint8, saturate=True)
converted_targets = tf.image.convert_image_dtype(targets, dtype=tf.uint8, saturate=True)
converted_outputs = tf.image.convert_image_dtype(outputs, dtype=tf.uint8, saturate=True)
# Compute PSNR
with tf.name_scope("compute_psnr"):
psnr = compute_psnr(converted_targets, converted_outputs)
# Add image summaries
with tf.name_scope('inputs_summary'):
tf.summary.image('input_summary', converted_inputs)
with tf.name_scope('targets_summary'):
tf.summary.image('target_summary', converted_targets)
with tf.name_scope('outputs_summary'):
tf.summary.image('outputs_summary', converted_outputs)
# Add scalar summary
if FLAGS.task == 'SRGAN':
tf.summary.scalar('discriminator_loss', Net.discrim_loss)
tf.summary.scalar('adversarial_loss', Net.adversarial_loss)
tf.summary.scalar('content_loss', Net.content_loss)
tf.summary.scalar('generator_loss', Net.content_loss + FLAGS.ratio*Net.adversarial_loss)
tf.summary.scalar('PSNR', psnr)
tf.summary.scalar('learning_rate', Net.learning_rate)
elif FLAGS.task == 'SRResnet':
tf.summary.scalar('content_loss', Net.content_loss)
tf.summary.scalar('generator_loss', Net.content_loss)
tf.summary.scalar('PSNR', psnr)
tf.summary.scalar('learning_rate', Net.learning_rate)
# Define the saver and weight initiallizer
saver = tf.train.Saver(max_to_keep=10)
# The variable list
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
# Here if we restore the weight from the SRResnet the var_list2 do not need to contain the discriminator weights
# On contrary, if you initial your weight from other SRGAN checkpoint, var_list2 need to contain discriminator
# weights.
if FLAGS.task == 'SRGAN':
if FLAGS.pre_trained_model_type == 'SRGAN':
var_list2 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator') + \
tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='discriminator')
elif FLAGS.pre_trained_model_type == 'SRResnet':
var_list2 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
else:
raise ValueError('Unknown pre_trained model type!!')
elif FLAGS.task == 'SRResnet':
var_list2 = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='generator')
weight_initiallizer = tf.train.Saver(var_list2)
# When using MSE loss, no need to restore the vgg net
if not FLAGS.perceptual_mode == 'MSE':
vgg_var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='vgg_19')
vgg_restore = tf.train.Saver(vgg_var_list)
# Start the session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# Use superviser to coordinate all queue and summary writer
sv = tf.train.Supervisor(logdir=FLAGS.summary_dir, save_summaries_secs=0, saver=None)
with sv.managed_session(config=config) as sess:
if (FLAGS.checkpoint is not None) and (FLAGS.pre_trained_model is False):
print('Loading model from the checkpoint...')
checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoint)
saver.restore(sess, checkpoint)
elif (FLAGS.checkpoint is not None) and (FLAGS.pre_trained_model is True):
print('Loading weights from the pre-trained model')
weight_initiallizer.restore(sess, FLAGS.checkpoint)
if not FLAGS.perceptual_mode == 'MSE':
vgg_restore.restore(sess, FLAGS.vgg_ckpt)
print('VGG19 restored successfully!!')
# Performing the training
if FLAGS.max_epoch is None:
if FLAGS.max_iter is None:
raise ValueError('one of max_epoch or max_iter should be provided')
else:
max_iter = FLAGS.max_iter
else:
max_iter = FLAGS.max_epoch * data.steps_per_epoch
print('Optimization starts!!!')
start = time.time()
for step in range(max_iter):
fetches = {
"train": Net.train,
"global_step": sv.global_step,
}
if ((step+1) % FLAGS.display_freq) == 0:
if FLAGS.task == 'SRGAN':
fetches["discrim_loss"] = Net.discrim_loss
fetches["adversarial_loss"] = Net.adversarial_loss
fetches["content_loss"] = Net.content_loss
fetches["PSNR"] = psnr
fetches["learning_rate"] = Net.learning_rate
fetches["global_step"] = Net.global_step
elif FLAGS.task == 'SRResnet':
fetches["content_loss"] = Net.content_loss
fetches["PSNR"] = psnr
fetches["learning_rate"] = Net.learning_rate
fetches["global_step"] = Net.global_step
if ((step+1) % FLAGS.summary_freq) == 0:
fetches["summary"] = sv.summary_op
results = sess.run(fetches)
if ((step + 1) % FLAGS.summary_freq) == 0:
print('Recording summary!!')
sv.summary_writer.add_summary(results['summary'], results['global_step'])
if ((step + 1) % FLAGS.display_freq) == 0:
train_epoch = math.ceil(results["global_step"] / data.steps_per_epoch)
train_step = (results["global_step"] - 1) % data.steps_per_epoch + 1
rate = (step + 1) * FLAGS.batch_size / (time.time() - start)
remaining = (max_iter - step) * FLAGS.batch_size / rate
print("progress epoch %d step %d image/sec %0.1f remaining %dm" % (train_epoch, train_step, rate, remaining / 60))
if FLAGS.task == 'SRGAN':
print("global_step", results["global_step"])
print("PSNR", results["PSNR"])
print("discrim_loss", results["discrim_loss"])
print("adversarial_loss", results["adversarial_loss"])
print("content_loss", results["content_loss"])
print("learning_rate", results['learning_rate'])
elif FLAGS.task == 'SRResnet':
print("global_step", results["global_step"])
print("PSNR", results["PSNR"])
print("content_loss", results["content_loss"])
print("learning_rate", results['learning_rate'])
if ((step +1) % FLAGS.save_freq) == 0:
print('Save the checkpoint')
saver.save(sess, os.path.join(FLAGS.output_dir, 'model'), global_step=sv.global_step)
print('Optimization done!!!!!!!!!!!!')