forked from Barry-Jay/lambdaSF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LamSF_Closed.v
340 lines (300 loc) · 11.5 KB
/
LamSF_Closed.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(**********************************************************************)
(* Intensional Lambda Calculus *)
(* *)
(* is implemented in Coq by adapting the implementation *)
(* of Lambda Calculus from Project Coq *)
(* 2015 *)
(**********************************************************************)
(**********************************************************************)
(* LamSF_Closed.v *)
(* *)
(* Barry Jay *)
(* *)
(**********************************************************************)
Require Import Arith.
Require Import Test.
Require Import General.
Require Import Max.
Require Import LamSF_Terms.
Require Import LamSF_Tactics.
Require Import LamSF_Substitution_term.
Require Import SF_reduction.
Require Import LamSF_reduction.
Require Import LamSF_Normal.
Require Import Omega.
(* closed terms *)
Fixpoint maxvar (M: lamSF) :=
match M with
| Ref i => S i
| Op o => 0
| App M1 M2 => max (maxvar M1) (maxvar M2)
| Abs N => pred (maxvar N)
end.
Definition closed M := maxvar M = 0.
Lemma maxvar_lift_rec : forall M n k, maxvar M + k >= maxvar (lift_rec M n k) .
Proof.
induction M; split_all.
unfold relocate. elim(test n0 n); split_all; omega.
omega.
assert(pred (maxvar M) + k >= pred (maxvar M + k)) by omega.
assert(maxvar M + k >= maxvar (lift_rec M (S n) k)) by eapply2 IHM.
omega.
rewrite max_plus.
eapply2 max_monotonic.
Qed.
Lemma subst_decreases_maxvar :
forall M N k, max (pred (maxvar M)) (maxvar N + k) >= maxvar(subst_rec M N k).
Proof.
induction M; split_all.
unfold insert_Ref.
elim(compare k n); split_all.
elim a; split_all.
assert(max n (maxvar N + k) >= n) by eapply2 max_is_max.
omega.
unfold lift.
elim(maxvar_lift_rec N 0 k); split_all.
eapply2 max_is_max.
assert(max n (S m) >= max n m) by (eapply2 max_monotonic; omega).
omega.
assert(max n (maxvar N + k) >= maxvar N + k) by eapply2 max_is_max.
omega.
omega.
(* 2 subgoals *)
assert(max (pred (pred (maxvar M))) (maxvar N + k) >= pred(max (pred (maxvar M)) (maxvar N + (S k)))).
rewrite max_pred.
eapply2 max_monotonic.
omega.
assert(max (pred (maxvar M)) (maxvar N + S k) >= maxvar (subst_rec M N (S k)))
by eapply2 IHM.
assert(pred (max (pred (maxvar M)) (maxvar N + S k)) >= pred (maxvar (subst_rec M N (S k)))) by omega.
omega.
(* 1 *)
rewrite max_pred.
assert(max(max (pred (maxvar M1)) (maxvar N + k) ) (max (pred (maxvar M2)) (maxvar N + k)) >= max (maxvar (subst_rec M1 N k)) (maxvar (subst_rec M2 N k))).
eapply2 max_monotonic.
assert(max (max (pred (maxvar M1)) (pred (maxvar M2))) (maxvar N + k) >=
max(max (pred (maxvar M1)) (maxvar N + k) ) (max (pred (maxvar M2)) (maxvar N + k))).
2: omega.
eapply2 max_max2; eapply2 max_monotonic; eapply2 max_is_max.
Qed.
Definition decreases (rank: lamSF -> nat) (red:termred):=
forall M N, red M N -> rank M >= rank N.
Lemma decreases_multi_step:
forall rank red, decreases rank red -> decreases rank (multi_step red).
Proof.
red. intros rank red D M N R; induction R; split_all.
assert(rank M >= rank N) by eapply2 D.
assert(rank N >= rank P) by eapply2 IHR.
omega.
Qed.
Lemma lift_rec_closed: forall M n, n>= maxvar M -> forall k, lift_rec M n k = M.
Proof. induction M; split_all; subst; unfold lift; unfold lift_rec; fold lift_rec.
unfold relocate. elim(test n0 n); split_all; try noway.
rewrite IHM. auto. omega.
assert(max (maxvar M1) (maxvar M2) >= maxvar M1) by eapply2 max_is_max.
assert(max (maxvar M1) (maxvar M2) >= maxvar M2) by eapply2 max_is_max.
rewrite IHM1; try omega; rewrite IHM2; try omega; congruence.
Qed.
Lemma lift_closed: forall M, maxvar M =0 -> forall k, lift k M = M.
Proof. split_all; eapply2 lift_rec_closed. omega. Qed.
Lemma subst_rec_closed : forall M n, n>= maxvar M -> forall N, subst_rec M N n = M.
Proof.
induction M; split_all; subst.
unfold insert_Ref.
elim(compare n0 n); split_all; try noway. elim a; split_all; try noway.
rewrite IHM; try omega; split_all.
assert(max (maxvar M1) (maxvar M2) >= maxvar M1) by eapply2 max_is_max.
assert(max (maxvar M1) (maxvar M2) >= maxvar M2) by eapply2 max_is_max.
rewrite IHM1; try omega; rewrite IHM2; try omega; split_all.
Qed.
Lemma maxvar_subst_rec: forall M k, maxvar M <= k -> forall N, subst_rec M N k = M.
Proof.
induction M; unfold subst_rec; fold subst_rec; split_all; subst.
unfold insert_Ref. elim(compare k n); split_all; try noway.
elim a; split_all; try noway.
rewrite IHM; split_all; omega.
assert(k>= maxvar M1 /\ k>= maxvar M2) by eapply2 max_max; split_all.
rewrite IHM1; split_all.
rewrite IHM2; split_all.
Qed.
Lemma maxvar_star: forall M, maxvar (star M) = pred (maxvar M).
Proof.
induction M; split_all.
case n; split_all.
rewrite max_pred. auto.
Qed.
Lemma left_component_preserves_maxvar : forall M, compound M ->
maxvar(left_component M) <= maxvar M.
Proof.
split_all.
inversion H; split_all; try omega.
eapply2 max_is_max.
Qed.
Lemma right_component_preserves_maxvar : forall M, compound M ->
maxvar(right_component M) <= maxvar M.
Proof.
split_all.
inversion H; split_all; try omega.
eapply2 max_is_max.
rewrite maxvar_star.
auto.
rewrite maxvar_star.
auto.
Qed.
Ltac max_l :=
match goal with
| |- max ?m ?n >= ?p =>
assert(max m n >= m) by eapply2 max_is_max;
cut(m >= p); split_all; try omega
end.
Ltac max_r :=
match goal with
| |- max ?m ?n >= ?p =>
assert(max m n >= n) by eapply2 max_is_max;
cut(n >= p); split_all; try omega
end.
Lemma decreases_maxvar_lamF_red1: decreases maxvar lamSF_red1.
(*
forall M N, lamF_red1 M N -> maxvar N <= maxvar M.
*)
Proof.
cut(forall M N, lamSF_red1 M N -> maxvar N <= maxvar M).
split_all; red.
intros M N R; induction R; split_all; eauto; try (repeat (eapply2 max_monotonic); fail); try omega; repeat (eapply2 max_max2); try (max_r; fail); try (repeat max_l; fail).
(* 5 *)
unfold subst.
assert(max (pred (maxvar M)) (maxvar N + 0) >= maxvar(subst_rec M N 0)).
eapply2 subst_decreases_maxvar.
replace (maxvar N + 0) with (maxvar N) in H by omega.
omega.
(* 4 *)
max_l. max_r.
(* 3 *)
assert(max(maxvar M) (maxvar N) >= maxvar M) by max_l. omega.
(* 2 *)
max_l. max_l. eapply2 left_component_preserves_maxvar.
max_l. max_l. eapply2 right_component_preserves_maxvar.
Qed.
Lemma decreases_maxvar_lamF_red : decreases maxvar lamSF_red.
Proof. eapply2 decreases_multi_step. eapply2 decreases_maxvar_lamF_red1. Qed.
Lemma status_lt_maxvar: forall M, status M <= maxvar M.
Proof.
cut(forall p M, p>= rank M -> status M <= maxvar M).
split_all; eapply2 H.
induction p; intros.
assert(rank M >0) by eapply2 rank_positive. noway.
induction M; intros; try max_out; try (eapply2 IHM1); try (split_all; omega).
simpl in *; split_all.
assert(status M <= maxvar M). eapply2 IHp.
omega. omega.
(* 1 *)
generalize IHM1 H; clear IHM1 H; case M1; intros; try (split_all; omega).
split_all.
case (maxvar M2); split_all.
assert(max n n0 >= n) by max_l. omega.
(* 1 *)
generalize IHM1 H; clear IHM1 H; case l; intros; try (split_all; omega).
split_all.
case (maxvar l0); split_all.
case (maxvar M2); split_all.
assert(max n n0 >= n) by max_l. omega.
case (maxvar M2); split_all.
assert(max n n0 >= n) by max_l. omega.
assert(max n n0 >= n) by max_l.
assert(max n n1 >= n) by max_l.
assert(max (max n n0) n1 >= max n n1) by eapply2 max_monotonic. omega.
(* 1 *)
generalize IHM1 H; clear IHM1 H; case l1; intros; try (split_all; omega).
split_all.
case (maxvar l2); split_all.
case (maxvar l0); split_all.
case (maxvar M2); split_all.
assert(max n n0 >= n) by max_l. omega.
case (maxvar M2); split_all.
assert(max n n0 >= n) by max_l. omega.
assert(max n n0 >= n) by max_l.
assert(max n n1 >= n) by max_l.
assert(max (max n n0) n1 >= max n n1) by eapply2 max_monotonic. omega.
case (maxvar l0); split_all.
case (maxvar M2); split_all.
assert(max n n0 >= n) by max_l. omega.
assert(max n n0 >= n) by max_l.
assert(max n n1 >= n) by max_l.
assert(max (max n n0) n1 >= max n n1) by eapply2 max_monotonic. omega.
case (maxvar M2); split_all.
assert(max n n0 >= n) by max_l.
assert(max n n1 >= n) by max_l.
assert(max (max n n0) n1 >= max n n1) by eapply2 max_monotonic. omega.
assert(max n n0 >= n) by max_l.
assert(max n n1 >= n) by max_l.
assert(max n n2 >= n) by max_l.
assert(max (max n n0) n1 >= max n n1) by eapply2 max_monotonic.
assert(max (max n n0) n1 >= n) by omega.
assert(max (max (max n n0) n1) n2 >= max n n2) by eapply2 max_monotonic.
assert(max (max (max n n0) n1) n2 >= n) by omega.
omega.
gen2_case IHM1 H o.
omega.
assert(status l2 <= maxvar l2). eapply2 IHp. simpl in *; omega.
assert(maxvar l2 <= max (max (maxvar l2) (maxvar l0)) (maxvar M2)).
assert(max (maxvar l2) (maxvar l0) >= maxvar l2) by max_l.
assert(max (max (maxvar l2) (maxvar l0)) (maxvar M2) >= max (maxvar l2) (maxvar l0)) by max_l.
omega.
omega.
(* 1 *)
assert(status(App (App (App (App l3 l4) l2) l0) M2) = status (App (App (App l3 l4) l2) l0)). split_all.
rewrite H0.
assert(status (App (App (App l3 l4) l2) l0) <=
maxvar (App (App (App l3 l4) l2) l0)). eapply2 IHM1.
simpl in *; omega.
assert(maxvar (App (App (App l3 l4) l2) l0) <= maxvar (App (App (App (App l3 l4) l2) l0) M2)). split_all. eapply2 max_is_max. omega.
Qed.
Definition program M := normal M /\ maxvar M = 0.
Lemma components_monotonic:
forall M N, program M -> program N ->
left_component M = left_component N ->
right_component M = right_component N -> M = N.
Proof.
induction M; unfold program; split_all.
(* 3 *)
gen4_case H1 H2 H3 H4 N; try discriminate.
subst. gen_case H2 l. gen_case H2 n. discriminate.
subst. inversion H3. inversion H7. inversion H7.
(* 2 *)
gen4_case H1 H2 H3 H4 N; try discriminate.
(* 4 *)
gen_case H2 M.
gen_case H2 n. discriminate.
assert(M=l). eapply2 star_monotonic. congruence.
(* 2 *)
subst.
inversion H3. simpl in *. noway.
inv1 compound.
(* 1 *)
inversion H0. simpl in *.
assert(status (App M1 M2) <= maxvar (App M1 M2)) by eapply2 status_lt_maxvar.
simpl in *. noway.
subst.
gen_case H9 N; inversion H9.
Qed.
Definition factorable M := (exists o, M = Op o) \/ compound M.
Theorem programs_are_factorable : forall M, program M -> factorable M.
Proof.
unfold program, factorable; split_all. eapply2 not_active_factorable.
assert(status M <= maxvar M) by eapply2 status_lt_maxvar.
omega.
Qed.