-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdatasets.py
64 lines (54 loc) · 2.67 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.datasets import MNIST
class MnistDataset(Dataset):
def __init__(self, root_dir='data/', training='train', train_samples='all'):
self.imgs = [];
self.labels = [];
self.fakes = [];
if training == 'train' or training == 'validate':
x, y = torch.load(root_dir + 'MNIST/processed/training.pt');
else:
x, y = torch.load(root_dir + 'MNIST/processed/test.pt');
if train_samples == 'all' and training == 'train':
for i in range(50000):
self.imgs.append(x[i, ...].float()/255);
self.labels.append(y[i].long());
self.fakes.append(torch.ByteTensor([0])[0])
elif training == 'train':
for i in range(train_samples):
self.imgs.append(x[i, ...].float()/255);
self.labels.append(y[i].long());
self.fakes.append(torch.ByteTensor([0])[0]);
elif training == 'validate':
for i in range(1, 10001):
self.imgs.append(x[-i, ...].float()/255);
self.labels.append(y[-i].long());
self.fakes.append(torch.ByteTensor([0])[0]);
elif training == 'test':
for i in range(y.shape[0]):
self.imgs.append(x[i, ...].float()/255);
self.labels.append(y[i].long());
self.fakes.append(torch.ByteTensor([0])[0]);
def __len__(self):
return len(self.labels);
def __getitem__(self, idx):
x = self.imgs[idx];
y = self.labels[idx];
fake = self.fakes[idx];
return (x.unsqueeze(0)-0.5)/(0.5)*0.6, y.float().unsqueeze(0), fake;
def add_artificial(self, X):
for i in range(X.shape[0]):
self.imgs.append(X[i, 0, ...].detach().cpu());
self.labels.append(self.labels[0].new(1).fill_(-i)[0]);
self.fakes.append(torch.ByteTensor([1])[0]);
pass;
def get_data_loaders(train_batch_size, val_batch_size, test_batch_size, train_size='all'):
MNIST(download=True, train=True, root=".").train_data.float();
train_loader = DataLoader(MnistDataset(root_dir='', training='train', train_samples=train_size),
batch_size=train_batch_size, shuffle=True);
val_loader = DataLoader(MnistDataset(root_dir='', training='validate'),
batch_size=val_batch_size, shuffle=False);
test_loader = DataLoader(MnistDataset(root_dir='', training='test'),
batch_size=test_batch_size, shuffle=False);
return train_loader, val_loader, test_loader;