This specification describes simple node discovery, channel discovery, and channel update mechanisms that do not rely on a third-party to disseminate the information.
Node and channel discovery serve two different purposes:
- Channel discovery allows the creation and maintenance of a local view of the network's topology, so that a node can discover routes to desired destinations.
- Node discovery allows nodes to broadcast their ID, host, and port, so that other nodes can open connections and establish payment channels with them.
To support channel discovery, peers in the network exchange
channel_announcement
messages containing information regarding new
channels between the two nodes. They can also exchange channel_update
messages, which update information about a channel. There can only be
one valid channel_announcement
for any channel, but at least two
channel_update
messages are expected.
To support node discovery, peers exchange node_announcement
messages, which supply additional information about the nodes. There may be
multiple node_announcement
messages, in order to update the node information.
- The
announcement_signatures
Message - The
channel_announcement
Message - The
node_announcement
Message - The
channel_update
Message - Initial Sync
- Rebroadcasting
- HTLC Fees
- Pruning the Network View
- Recommendations for Routing
- References
This is a direct message between the two endpoints of a channel and serves as an opt-in mechanism to allow the announcement of the channel to the rest of the network.
It contains the necessary signatures, by the sender, to construct the channel_announcement
message.
- type: 259 (
announcement_signatures
) - data:
- [
32
:channel_id
] - [
8
:short_channel_id
] - [
64
:node_signature
] - [
64
:bitcoin_signature
]
- [
The willingness of the initiating node to announce the channel is signaled during channel opening by setting the announce_channel
bit in channel_flags
(see BOLT #2).
The announcement_signatures
message is created by constructing a channel_announcement
message, corresponding to the newly established channel, and signing it with the secrets matching an endpoint's node_id
and bitcoin_key
. After it's signed, the
announcement_signatures
message may be sent.
The short_channel_id
is the unique description of the funding transaction.
It is constructed as follows:
- the most significant 3 bytes: indicating the block height
- the next 3 bytes: indicating the transaction index within the block
- the least significant 2 bytes: indicating the output index that pays to the channel.
A node:
- if the
open_channel
message has theannounce_channel
bit set AND ashutdown
message has not been sent:- MUST send the
announcement_signatures
message.- MUST NOT send
announcement_signatures
messages untilfunding_locked
has been sent AND the funding transaction has at least six confirmations.
- MUST NOT send
- MUST send the
- otherwise:
- MUST NOT send the
announcement_signatures
message.
- MUST NOT send the
- upon reconnection:
- MUST respond to the first
announcement_signatures
message with its ownannouncement_signatures
message. - if it has NOT received an
announcement_signatures
message:- SHOULD retransmit the
announcement_signatures
message.
- SHOULD retransmit the
- MUST respond to the first
A recipient node:
- if the
node_signature
OR thebitcoin_signature
is NOT correct:- MAY fail the channel.
- if it has sent AND received a valid
announcement_signatures
message:- SHOULD queue the
channel_announcement
message for its peers.
- SHOULD queue the
This message contains ownership information regarding a channel. It ties
each on-chain Bitcoin key to the associated Lightning node key, and vice-versa.
The channel is not practically usable until at least one side has announced
its fee levels and expiry, using channel_update
.
Proving the existence of a channel between node_1
and node_2
requires:
- proving that the funding transaction pays to
bitcoin_key_1
andbitcoin_key_2
- proving that
node_1
ownsbitcoin_key_1
- proving that
node_2
ownsbitcoin_key_2
Assuming that all nodes know the unspent transaction outputs, the first proof is
accomplished by a node finding the output given by the short_channel_id
and
verifying that it is indeed a P2WSH funding transaction output for those keys
specified in BOLT #3.
The last two proofs are accomplished through explicit signatures:
bitcoin_signature_1
and bitcoin_signature_2
are generated for each
bitcoin_key
and each of the corresponding node_id
s are signed.
It's also necessary to prove that node_1
and node_2
both agree on the
announcement message: this is accomplished by having a signature from each
node_id
(node_signature_1
and node_signature_2
) signing the message.
- type: 256 (
channel_announcement
) - data:
- [
64
:node_signature_1
] - [
64
:node_signature_2
] - [
64
:bitcoin_signature_1
] - [
64
:bitcoin_signature_2
] - [
2
:len
] - [
len
:features
] - [
32
:chain_hash
] - [
8
:short_channel_id
] - [
33
:node_id_1
] - [
33
:node_id_2
] - [
33
:bitcoin_key_1
] - [
33
:bitcoin_key_2
]
- [
The origin node:
- MUST set
chain_hash
to the 32-byte hash that uniquely identifies the chain that the channel was opened within:- for the Bitcoin blockchain:
- MUST set
chain_hash
value (encoded in hex) equal to000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
.
- MUST set
- for the Bitcoin blockchain:
- MUST set
short_channel_id
to refer to the confirmed funding transaction, as specified in BOLT #2.- Note: the corresponding output MUST be a P2WSH, as described in BOLT #3.
- MUST set
node_id_1
andnode_id_2
to the public keys of the two nodes operating the channel, such thatnode_id_1
is the numerically-lesser of the two DER-encoded keys sorted in ascending numerical order. - MUST set
bitcoin_key_1
andbitcoin_key_2
tonode_id_1
andnode_id_2
's respectivefunding_pubkey
s. - MUST compute the double-SHA256 hash
h
of the message, beginning at offset 256, up to the end of the message.- Note: the hash skips the 4 signatures but hashes the rest of the message, including any future fields appended to the end.
- MUST set
node_signature_1
andnode_signature_2
to valid signatures of the hashh
(usingnode_id_1
andnode_id_2
's respective secrets). - MUST set
bitcoin_signature_1
andbitcoin_signature_2
to valid signatures of the hashh
(usingbitcoin_key_1
andbitcoin_key_2
's respective secrets). - SHOULD set
len
to the minimum length required to hold thefeatures
bits it sets.
The final node:
- MUST verify the integrity AND authenticity of the message by verifying the signatures.
- if there is an unknown even bit in the
features
field:- MUST NOT parse the remainder of the message.
- MUST NOT add the channel to its local network view.
- SHOULD NOT forward the announcement.
- if the
short_channel_id
's output does NOT correspond to a P2WSH (usingbitcoin_key_1
andbitcoin_key_2
, as specified in BOLT #3) OR the output is spent:- MUST ignore the message.
- if the specified
chain_hash
is unknown to the receiver:- MUST ignore the message.
- otherwise:
- if
bitcoin_signature_1
,bitcoin_signature_2
,node_signature_1
ORnode_signature_2
are invalid OR NOT correct:- SHOULD fail the connection.
- otherwise:
- if
node_id_1
ORnode_id_2
are blacklisted:- SHOULD ignore the message.
- otherwise:
- if the transaction referred to was NOT previously announced as a
channel:
- SHOULD queue the message for rebroadcasting.
- MAY choose NOT to for messages longer than the minimum expected length.
- if the transaction referred to was NOT previously announced as a
channel:
- if it has previously received a valid
channel_announcement
, for the same transaction, in the same block, but for a differentnode_id_1
ornode_id_2
:- SHOULD blacklist the previous message's
node_id_1
andnode_id_2
, as well as thisnode_id_1
andnode_id_2
AND forget any channels connected to them.
- SHOULD blacklist the previous message's
- otherwise:
- SHOULD store this
channel_announcement
.
- SHOULD store this
- if
- if
- once its funding output has been spent OR reorganized out:
- SHOULD forget a channel.
Both nodes are required to sign to indicate they are willing to route other payments via this channel (i.e. be part of the public network); requiring their Bitcoin signatures proves that they control the channel.
The blacklisting of conflicting nodes disallows multiple different announcements. Such conflicting announcements should never be broadcast by any node, as this implies that keys have leaked.
While channels should not be advertised before they are sufficiently deep, the requirement against rebroadcasting only applies if the transaction has not moved to a different block.
In order to avoid storing excessively large messages, yet still allow for reasonable future expansion, nodes are permitted to restrict rebroadcasting (perhaps statistically).
New channel features are possible in the future: backwards compatible (or optional) features will have odd feature bits, while incompatible features will have even feature bits ("It's OK to be odd!"). Incompatible features will result in the announcement not being forwarded by nodes that do not understand them.
This message allows a node to indicate extra data associated with it, in addition to its public key. To avoid trivial denial of service attacks, nodes not associated with an already known channel are ignored.
- type: 257 (
node_announcement
) - data:
- [
64
:signature
] - [
2
:flen
] - [
flen
:features
] - [
4
:timestamp
] - [
33
:node_id
] - [
3
:rgb_color
] - [
32
:alias
] - [
2
:addrlen
] - [
addrlen
:addresses
]
- [
timestamp
allows for the ordering of messages, in the case of multiple
announcements. rgb_color
and alias
allow intelligence services to assign
nodes colors like black and cool monikers like 'IRATEMONK' and 'WISTFULTOLL'.
addresses
allows a node to announce its willingness to accept incoming network
connections: it contains a series of address descriptor
s for connecting to the
node. The first byte describes the address type and is followed by the
appropriate number of bytes for that type.
The following address descriptor
types are defined:
0
: padding; data = none (length 0)1
: ipv4; data =[4:ipv4_addr][2:port]
(length 6)2
: ipv6; data =[16:ipv6_addr][2:port]
(length 18)3
: Tor v2 onion service; data =[10:onion_addr][2:port]
(length 12)- version 2 onion service addresses; Encodes an 80-bit, truncated
SHA-1
hash of a 1024-bitRSA
public key for the onion service (a.k.a. Tor hidden service).
- version 2 onion service addresses; Encodes an 80-bit, truncated
4
: Tor v3 onion service; data =[35:onion_addr][2:port]
(length 37)- version 3 (prop224)
onion service addresses; Encodes:
[32:32_byte_ed25519_pubkey] || [2:checksum] || [1:version]
, wherechecksum = sha3(".onion checksum" | pubkey || version)[:2]
.
- version 3 (prop224)
onion service addresses; Encodes:
The origin node:
- MUST set
timestamp
to be greater than that of any previousnode_announcement
it has previously created.- MAY base it on a UNIX timestamp.
- MUST set
signature
to the signature of the double-SHA256 of the entire remaining packet aftersignature
(using the key given bynode_id
). - MAY set
alias
ANDrgb_color
to customize its appearance in maps and graphs.- Note: the first byte of
rgb
is the red value, the second byte is the green value, and the last byte is the blue value.
- Note: the first byte of
- MUST set
alias
to a valid UTF-8 string, with anyalias
trailing-bytes equal to 0. - SHOULD fill
addresses
with an address descriptor for each public network address that expects incoming connections. - MUST set
addrlen
to the number of bytes inaddresses
. - MUST place non-zero typed address descriptors in ascending order.
- MAY place any number of zero-typed address descriptors anywhere.
- SHOULD use placement only for aligning fields that follow
addresses
. - MUST NOT create a
type 1
ORtype 2
address descriptor withport
equal to 0. - SHOULD ensure
ipv4_addr
ANDipv6_addr
are routable addresses. - MUST NOT include more than one
address descriptor
of the same type. - SHOULD set
flen
to the minimum length required to hold thefeatures
bits it sets.
The final node:
- if
node_id
is NOT a valid compressed public key:- SHOULD fail the connection.
- MUST NOT process the message further.
- if
signature
is NOT a valid signature (usingnode_id
of the double-SHA256 of the entire message following thesignature
field, including unknown fields followingalias
):- SHOULD fail the connection.
- MUST NOT process the message further.
- if
features
field contains unknown even bits:- MUST NOT parse the remainder of the message.
- MAY discard the message altogether.
- SHOULD NOT connect to the node.
- MAY forward
node_announcement
s that contain an unknownfeatures
bit, regardless of if it has parsed the announcement or not. - SHOULD ignore the first
address descriptor
that does NOT match the types defined above. - if
addrlen
is insufficient to hold the address descriptors of the known types:- SHOULD fail the connection.
- if
port
is equal to 0:- SHOULD ignore
ipv6_addr
ORipv4_addr
.
- SHOULD ignore
- if
node_id
is NOT previously known from achannel_announcement
message, OR iftimestamp
is NOT greater than the last-receivednode_announcement
from thisnode_id
:- SHOULD ignore the message.
- otherwise:
- if
timestamp
is greater than the last-receivednode_announcement
from thisnode_id
:- SHOULD queue the message for rebroadcasting.
- MAY choose NOT to queue messages longer than the minimum expected length.
- if
- MAY use
rgb_color
ANDalias
to reference nodes in interfaces.- SHOULD insinuate their self-signed origins.
New node features are possible in the future: backwards compatible (or
optional) ones will have odd feature
bits, incompatible ones will have
even feature
bits. These may be propagated by nodes even if they
cannot process the announcements themselves.
New address types may be added in the future; as address descriptors have
to be ordered in ascending order, unknown ones can be safely ignored.
Additional fields beyond addresses
may also be added in the future—with
optional padding within addresses
, if they require certain alignment.
Node aliases are user-defined and provide a potential avenue for injection attacks, both during the process of rendering and during persistence.
Node aliases should always be sanitized before being displayed in HTML/Javascript contexts or any other dynamically interpreted rendering frameworks. Similarly, consider using prepared statements, input validation, and escaping to protect against injection vulnerabilities and persistence engines that support SQL or other dynamically interpreted querying languages.
Don't be like the school of Little Bobby Tables.
After a channel has been initially announced, each side independently
announces the fees and minimum expiry delta it requires to relay HTLCs
through this channel. Each uses the 8-byte channel shortid that matches the
channel_announcement
and the 1-bit flags
field to indicate which end of the
channel it's on (origin or final). A node can do this multiple times, in
order to change fees.
Note that the channel_update
message is only useful in the context
of relaying payments, not sending payments. When making a payment
A
-> B
-> C
-> D
, only the channel_update
s related to channels
B
-> C
(announced by B
) and C
-> D
(announced by C
) will
come into play. When building the route, amounts and expiries for HTLCs need
to be calculated backward from the destination to the source. The exact initial
value for amount_msat
and the minimal value for cltv_expiry
, to be used for
the last HTLC in the route, are provided in the payment request
(see BOLT #11).
- type: 258 (
channel_update
) - data:
- [
64
:signature
] - [
32
:chain_hash
] - [
8
:short_channel_id
] - [
4
:timestamp
] - [
2
:flags
] - [
2
:cltv_expiry_delta
] - [
8
:htlc_minimum_msat
] - [
4
:fee_base_msat
] - [
4
:fee_proportional_millionths
]
- [
The flags
bitfield is used to indicate the direction of the channel: it
identifies the node that this update originated from and signals various options
concerning the channel. The following table specifies the meaning of its
individual bits:
Bit Position | Name | Meaning |
---|---|---|
0 | direction |
Direction this update refers to. |
1 | disable |
Disable the channel. |
The node_id
for the signature verification is taken from the corresponding
channel_announcement
: node_id_1
if the least-significant bit of flags is 0
or node_id_2
otherwise.
The origin node:
- MAY create a
channel_update
to communicate the channel parameters to the final node, even though the channel has not yet been announced (i.e. theannounce_channel
bit was not set).- MUST NOT forward such a
channel_update
to other peers, for privacy reasons. - Note: such a
channel_update
, one not preceded by achannel_announcement
, is invalid to any other peer and would be discarded.
- MUST NOT forward such a
- MUST set
signature
to the signature of the double-SHA256 of the entire remaining packet aftersignature
, using its ownnode_id
. - MUST set
chain_hash
ANDshort_channel_id
to match the 32-byte hash AND 8-byte channel ID that uniquely identifies the channel specified in thechannel_announcement
message. - if the origin node is
node_id_1
in the message:- MUST set the
direction
bit offlags
to 0.
- MUST set the
- otherwise:
- MUST set the
direction
bit offlags
to 1.
- MUST set the
- MUST set bits that are not assigned a meaning to 0.
- MAY create and send a
channel_update
with thedisable
bit set to 1, to signal a channel's temporary unavailability (e.g. due to a loss of connectivity) OR permanent unavailability (e.g. prior to an on-chain settlement).- MAY sent a subsequent
channel_update
with thedisable
bit set to 0 to re-enable the channel.
- MAY sent a subsequent
- MUST set
timestamp
to greater than 0, AND to greater than any previously-sentchannel_update
for thisshort_channel_id
.- SHOULD base
timestamp
on a UNIX timestamp.
- SHOULD base
- MUST set
cltv_expiry_delta
to the number of blocks it will subtract from an incoming HTLC'scltv_expiry
. - MUST set
htlc_minimum_msat
to the minimum HTLC value (in millisatoshi) that the final node will accept. - MUST set
fee_base_msat
to the base fee (in millisatoshi) it will charge for any HTLC. - MUST set
fee_proportional_millionths
to the amount (in millionths of a satoshi) it will charge per transferred satoshi.
The final node:
- if the
short_channel_id
does NOT match a previouschannel_announcement
, OR if the channel has been closed in the meantime:- MUST ignore
channel_update
s that do NOT correspond to one of its own channels.
- MUST ignore
- SHOULD accept
channel_update
s for its own channels (even if non-public), in order to learn the associated origin nodes' forwarding parameters. - if
signature
is not a valid signature, usingnode_id
of the double-SHA256 of the entire message following thesignature
field (including unknown fields followingfee_proportional_millionths
):- MUST NOT process the message further.
- SHOULD fail the connection.
- if the specified
chain_hash
value is unknown (meaning it isn't active on the specified chain):- MUST ignore the channel update.
- if
timestamp
is NOT greater than that of the last-receivedchannel_announcement
for thisshort_channel_id
AND fornode_id
:- SHOULD ignore the message.
- otherwise:
- if the
timestamp
is equal to the last-receivedchannel_announcement
AND the fields (other thansignature
) differ:- MAY blacklist this
node_id
. - MAY forget all channels associated with it.
- MAY blacklist this
- if the
- if the
timestamp
is unreasonably far in the future:- MAY discard the
channel_announcement
.
- MAY discard the
- otherwise:
- SHOULD queue the message for rebroadcasting.
- MAY choose NOT to for messages longer than the minimum expected length.
The timestamp
field is used by nodes for pruning channel_update
s that are
either too far in the future or have not been updated in two weeks; so it
makes sense to have it be a UNIX timestamp (i.e. seconds since UTC
1970-01-01). This cannot be a hard requirement, however, given the possible case
of two channel_update
s within a single second.
An endpoint node:
- upon establishing a connection:
- SHOULD set the
init
message'sinitial_routing_sync
flag to 1, to negotiate an initial sync.
- SHOULD set the
- if it requires a full copy of the other endpoint's routing state:
- SHOULD set the
initial_routing_sync
flag to 1.
- SHOULD set the
- upon receiving an
init
message with theinitial_routing_sync
flag set to 1:- SHOULD send
channel_announcement
s,channel_update
s andnode_announcement
s for all known channels and nodes, as if they were just received.
- SHOULD send
- if the
initial_routing_sync
flag is set to 0, OR if the initial sync was completed:- SHOULD resume normal operation, as specified in the following Rebroadcasting section.
The final node:
- upon receiving a new
channel_announcement
or achannel_update
ornode_announcement
with an updatedtimestamp
:- SHOULD update its local view of the network's topology accordingly.
- after applying the changes from the announcement:
- if there are no channels associated with the corresponding origin node:
- MAY purge the origin node from its set of known nodes.
- otherwise:
- SHOULD update the appropriate metadata AND store the signature
associated with the announcement.
- Note: this will later allow the final node to rebuild the announcement for its peers.
- SHOULD update the appropriate metadata AND store the signature
associated with the announcement.
- if there are no channels associated with the corresponding origin node:
An endpoint node:
- SHOULD flush outgoing announcements once every 60 seconds, independently of
the arrival times of announcements.
- Note: this results in staggered announcements that are unique (not duplicated).
- MAY re-announce its channels regularly.
- Note: this is discouraged, in order to keep the resource requirements low.
- upon connection establishment:
- SHOULD send all
channel_announcement
messages, followed by the latestnode_announcement
ANDchannel_update
messages.
- SHOULD send all
Once the announcement has been processed, it's added to a list of outgoing announcements, destined for the processing node's peers, replacing any older updates from the origin node. This list of announcements will be flushed at regular intervals: such a store-and-delayed-forward broadcast is called a staggered broadcast. Also, such batching of announcements forms a natural rate limit with low overhead.
The sending of all announcements on reconnection is naive, but simple, and allows bootstrapping for new nodes as well as updating for nodes that have been offline for some time.
The origin node:
- SHOULD accept HTLCs that pay a fee equal to or greater than:
- fee_base_msat + ( amount_msat * fee_proportional_millionths / 1000000 )
- SHOULD accept HTLCs that pay an older fee, for some reasonable time after
sending
channel_update
.- Note: this allows for any propagation delay.
A node:
- SHOULD monitor the funding transactions in the blockchain, to identify channels that are being closed.
- if the funding output of a channel is being spent:
- SHOULD be removed from the local network view AND be considered closed.
- if the announced node no longer has any associated open channels:
- MAY prune nodes added through
node_announcement
messages from their local view.- Note: this is a direct result of the dependency of a
node_announcement
being preceded by achannel_announcement
.
- Note: this is a direct result of the dependency of a
- MAY prune nodes added through
An endpoint node:
- if a channel's latest
channel_update
stimestamp
is older than two weeks (1209600 seconds):- MAY prune the channel.
- MAY ignore the channel.
- Note: this is an endpoint node policy and MUST NOT be enforced by forwarding peers, e.g. by closing channels when receiving outdated gossip messages. [ FIXME: is this intended meaning? ]
Several scenarios may result in channels becoming unusable and its endpoints
becoming unable to send updates for these channels. For example, this occurs if
both endpoints lose access to their private keys and can neither sign
channel_update
s nor close the channel on-chain. In this case, the channels are
unlikely to be part of a computed route, since they would be partitioned off
from the rest of the network; however, they would remain in the local network
view would be forwarded to other peers indefinitely.
When calculating a route for an HTLC, both the cltv_expiry_delta
and the fee
need to be considered: the cltv_expiry_delta
contributes to the time that
funds will be unavailable in the event of a worst-case failure. The relationship
between these two attributes is unclear, as it depends on the reliability of the
nodes involved.
If a route is computed by simply routing to the intended recipient and summing
the cltv_expiry_delta
s, then it's possible for intermediate nodes to guess
their position in the route. Knowing the CLTV of the HTLC, the surrounding
network topology, and the cltv_expiry_delta
s gives an attacker a way to guess
the intended recipient. Therefore, it's highly desirable to add a random offset
to the CLTV that the intended recipient will receive, which bumps all CLTVs
along the route.
In order to create a plausible offset, the origin node MAY start a limited
random walk on the graph, starting from the intended recipient and summing the
cltv_expiry_delta
s, and use the resulting sum as the offset.
This effectively creates a shadow route extension to the actual route and
provides better protection against this attack vector than simply picking a
random offset would.
Other more advanced considerations involve diversification of route selection, to avoid single points of failure and detection, and balancing of local channels.
Consider four nodes:
B
/ \
/ \
A C
\ /
\ /
D
Each advertises the following cltv_expiry_delta
on its end of every
channel:
- A: 10 blocks
- B: 20 blocks
- C: 30 blocks
- D: 40 blocks
C also uses a min_final_cltv_expiry
of 9 (the default) when requesting
payments.
Also, each node has a set fee scheme that it uses for each of its channels:
- A: 100 base + 1000 millionths
- B: 200 base + 2000 millionths
- C: 300 base + 3000 millionths
- D: 400 base + 4000 millionths
The network will see eight channel_update
messages:
- A->B:
cltv_expiry_delta
= 10,fee_base_msat
= 100,fee_proportional_millionths
= 1000 - A->D:
cltv_expiry_delta
= 10,fee_base_msat
= 100,fee_proportional_millionths
= 1000 - B->A:
cltv_expiry_delta
= 20,fee_base_msat
= 200,fee_proportional_millionths
= 2000 - D->A:
cltv_expiry_delta
= 40,fee_base_msat
= 400,fee_proportional_millionths
= 4000 - B->C:
cltv_expiry_delta
= 20,fee_base_msat
= 200,fee_proportional_millionths
= 2000 - D->C:
cltv_expiry_delta
= 40,fee_base_msat
= 400,fee_proportional_millionths
= 4000 - C->B:
cltv_expiry_delta
= 30,fee_base_msat
= 300,fee_proportional_millionths
= 3000 - C->D:
cltv_expiry_delta
= 30,fee_base_msat
= 300,fee_proportional_millionths
= 3000
B->C. If B were to send 4,999,999 millisatoshi directly to C, it would
neither charge itself a fee nor add its own cltv_expiry_delta
, so it would
use C's requested min_final_cltv_expiry
of 9. Presumably it would also add a
shadow route to give an extra CLTV of 42. Additionally, it could add extra
CLTV deltas at other hops, as these values represent a minimum, but chooses not
to do so here, for the sake of simplicity:
amount_msat
: 4999999cltv_expiry
: current-block-height + 9 + 42onion_routing_packet
:amt_to_forward
= 4999999outgoing_cltv_value
= current-block-height + 9 + 42
A->B->C. If A were to send 4,999,999 millisatoshi to C via B, it needs to
pay B the fee it specified in the B->C channel_update
, calculated as
per HTLC Fees:
fee_base_msat + ( amount_msat * fee_proportional_millionths / 1000000 )
200 + ( 4999999 * 2000 / 1000000 ) = 10199
Similarly, it would need to add B->C's channel_update
cltv_expiry
(20), C's
requested min_final_cltv_expiry
(9), and the cost for the shadow route (42).
Thus, A->B's update_add_htlc
message would be:
amount_msat
: 5010198cltv_expiry
: current-block-height + 20 + 9 + 42onion_routing_packet
:amt_to_forward
= 4999999outgoing_cltv_value
= current-block-height + 9 + 42
B->C's update_add_htlc
would be the same as B->C's direct payment above.
A->D->C. Finally, if for some reason A chose the more expensive route via D,
A->D's update_add_htlc
message would be:
amount_msat
: 5020398cltv_expiry
: current-block-height + 40 + 9 + 42onion_routing_packet
:amt_to_forward
= 4999999outgoing_cltv_value
= current-block-height + 9 + 42
And D->C's update_add_htlc
would again be the same as B->C's direct payment
above.
This work is licensed under a Creative Commons Attribution 4.0 International License.