Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

java.lang.UnsupportedOperationException: empty collection when running normalize_and_discover or CNV #35

Open
williambrandler opened this issue Jan 25, 2020 · 0 comments

Comments

@williambrandler
Copy link

When running cnv or normalize_and_discover on Deca on a Databricks cluster, with the following params:

["--class","org.bdgenomics.deca.cli.DecaMain","--conf","spark.serializer=org.apache.spark.serializer.KryoSerializer","--conf","spark.kryo.registrator=org.bdgenomics.deca.serialization.DECAKryoRegistrator","--conf","spark.kryo.registrationRequired=true","--conf","spark.hadoop.fs.s3.impl=com.databricks.s3a.S3AFileSystem","--conf","spark.hadoop.fs.s3a.impl=com.databricks.s3a.S3AFileSystem","--conf","spark.hadoop.fs.s3n.impl=com.databricks.s3a.S3AFileSystem","--conf","spark.hadoop.fs.s3a.canned.acl=BucketOwnerFullControl","--conf","spark.hadoop.fs.s3a.acl.default=BucketOwnerFullControl","--conf","spark.hadoop.mapreduce.input.fileinputformat.split.minsize=536870912","s3a://data/jars/deca/deca-cli_2.11-0.2.1-SNAPSHOT.jar","normalize_and_discover","-I","s3a://data/test/bam-output/test_coverage.txt","-cnv_rate","0.0001","-max_sample_mean_RD","10","-max_sample_sd_RD","5","-max_target_length","10000","-max_target_mean_RD","10","-max_target_sd_RD_star","5","-mean_target_distance","50000","-mean_targets_cnv","100","-min_target_mean_RD","0","-save_zscores","s3a://data/test/bam-output/test.zscores","-o","s3a://data/test/bam-output/test.gff3","-multi_file"]

we get the following error

Command body threw exception: java.lang.UnsupportedOperationException: empty collection Exception in thread "main" java.lang.UnsupportedOperationException: empty collection at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$apply$35.apply(RDD.scala:1053) at org.apache.spark.rdd.RDD$$anonfun$reduce$1$$anonfun$apply$35.apply(RDD.scala:1053) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1053) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:379) at org.apache.spark.rdd.RDD.reduce(RDD.scala:1033) at org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix.numRows(IndexedRowMatrix.scala:66) at org.bdgenomics.deca.coverage.ReadDepthMatrix.<init>(ReadDepthMatrix.scala:29) at org.bdgenomics.deca.Deca$$anonfun$readXHMMMatrix$1.apply(Deca.scala:77) at org.bdgenomics.deca.Deca$$anonfun$readXHMMMatrix$1.apply(Deca.scala:38) at scala.Option.fold(Option.scala:158) at org.apache.spark.rdd.Timer.time(Timer.scala:48) at org.bdgenomics.deca.Deca$.readXHMMMatrix(Deca.scala:38) at org.bdgenomics.deca.cli.NormalizingDiscoverer.run(NormalizingDiscoverer.scala:73) at org.bdgenomics.utils.cli.BDGSparkCommand$class.run(BDGCommand.scala:55) at org.bdgenomics.deca.cli.NormalizingDiscoverer.run(NormalizingDiscoverer.scala:69) at org.bdgenomics.deca.cli.DecaMain$$anonfun$run$3.apply(DecaMain.scala:71) at org.bdgenomics.deca.cli.DecaMain$$anonfun$run$3.apply(DecaMain.scala:70) at scala.Option.fold(Option.scala:158) at org.bdgenomics.deca.cli.DecaMain.run(DecaMain.scala:70) at org.bdgenomics.deca.cli.DecaMain$.main(DecaMain.scala:26) at org.bdgenomics.deca.cli.DecaMain.main(DecaMain.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52) at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:849) at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:167) at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:195) at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86) at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:924) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:933) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

Running coverage by itself works fine, and using that output as input to normalize_and_discover gives the error. Please advise

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant