-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
112 lines (95 loc) · 4.74 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import argparse
import torch
import os
import json
from tqdm import tqdm
import shortuuid
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
from PIL import Image
import math
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
def read_jsonl(file_path):
data = []
with open(file_path, 'r', encoding='utf-8') as file:
for line in file:
json_line = json.loads(line.strip())
if json_line['conversations'][1]["value"] == 'yes' or json_line['conversations'][1]["value"] == 'no':
json_line['conversations'][0]["value"] = json_line['conversations'][0]["value"].replace('Correct Answer:', 'Only return yes or no. Correct Answer:')
data.append(json_line)
return data
def eval_model(args):
# Model
disable_torch_init()
model_path = os.path.expanduser(args.model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
try:
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
except:
questions = json.load(open(os.path.expanduser(args.question_file), "r"))
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
answers_file = os.path.expanduser(args.answers_file)
#os.makedirs(os.path.dirname(answers_file), exist_ok=True)
ans_file = open(answers_file, "w")
for line in tqdm(questions):
image_file = line["image"]
qs = line["conversations"][0]["value"].replace('<image>', '')
cur_prompt = qs
if model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
conv = conv_templates[args.conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if line["conversations"][1]["value"] == 'yes' or line["conversations"][1]["value"] == 'no':
prompt = prompt.replace('Correct Answer:', 'Only return yes or no. Correct Answer:').replace("<image>\n", "")
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB')
image_tensor = process_images([image], image_processor, model.config)[0]
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor.unsqueeze(0).half().cuda(),
image_sizes=[image.size],
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
# no_repeat_ngram_size=3,
max_new_tokens=1024,
use_cache=True)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
ans_id = shortuuid.uuid()
ans_file.write(json.dumps({"prompt": cur_prompt,
"text": outputs,
"answer_id": ans_id,
"model_id": model_name}) + "\n")
ans_file.flush()
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--image-folder", type=str, default="")
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
parser.add_argument("--conv-mode", type=str, default="llava_v1")
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=None)
parser.add_argument("--num_beams", type=int, default=1)
args = parser.parse_args()
eval_model(args)